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ABSTRACT

The timing of deformation and deposition 
within syntectonic basins provides critical infor-
mation for understanding the evolution of strain in 
mountain belts. In the U.S. Cordillera, contractional 
deformation was partitioned between the Sevier 
thrust belt in Utah and several structural prov-
inces in the hinterland in Nevada. One hinterland 
province, the Central Nevada thrust belt (CNTB), 
accommodated up to ~15 km of shortening; how-
ever, in most places, this deformation can only be 
bracketed between Permian and Eocene. Creta-
ceous deposits of the Newark Canyon Formation 
(NCF), which are sparsely exposed along the length 
of the CNTB, offer the opportunity to constrain 
deformation timing. Here, we present mapping and 
U-Pb zircon geochronology from the NCF in the Dia-
mond Mountains, which demonstrate deposition of 
the NCF during proximal CNTB deformation. Depo-
sition of the basal NCF member was under way no 
earlier than ca. 114 Ma, a tuff in the middle part of 
the section was deposited at ca. 103 Ma, and the 
youngest member was deposited no earlier than 
ca. 99 Ma. Intraformational angular unconformi-
ties and abrupt along- and across-strike thickness 
changes indicate that NCF deposition was related 
to growth of an east-vergent fault-propagation 
fold. Clast compositions define unroofing of upper 
Paleozoic sedimentary rocks, which we interpret 
as the progressive erosion of an anticline ~10 km 
to the west. CNTB deformation was contempora-
neous with shortening in the Sevier thrust belt, 
which defines middle Cretaceous strain partition-
ing between frontal and interior components of the 

Cordillera. Strain partitioning may have been pro-
moted by renewed underthrusting during a period 
of high-flux magmatism.

■■ INTRODUCTION

Documenting the space-time distribution of 
contractional deformation is fundamental to under-
standing how orogenic systems evolve. However, 
orogenic wedges are dynamic, and often record 
a complex interplay between deformation at the 
frontal wedge tip and out-of-sequence thrusting 
and folding in the internal part of the wedge (e.g., 
Morley, 1988; Taylor et al., 2000; McQuarrie, 2002; 
Wells et al., 2012; Long et al., 2014; Anderson et al., 
2018). For this reason, analyzing the geometry, tim-
ing, and magnitude of deformation within both the 
frontal and interior portions of an orogenic wedge 
is crucial for understanding fold-thrust dynamics.

The North American Cordilleran orogen was 
constructed between the Jurassic and Paleogene 
(ca. 150–50 Ma) in response to eastward subduction 
of the Farallon plate beneath North America (e.g., 
Armstrong, 1968; Allmendinger, 1992; DeCelles, 
2004; Dickinson, 2006; Yonkee and Weil, 2015). In the 
western U.S. portion of the Cordillera, contractional 
deformation affected a broad retroarc region across 
Nevada and western Utah (Fig. 1). The majority of 
shortening (~150–220 km) was accommodated in 
the Sevier thrust belt in western Utah (e.g., Arm-
strong, 1968; Yonkee et al., 1997; DeCelles and 
Coogan, 2006), where decades of research have 
yielded a solid understanding of the geometry, 
magnitude, and timing of deformation (e.g., Lawton, 

1983; Lawton et al., 1997; Villien and Kligfield, 1986; 
Allmendinger, 1992; Burchfiel et al., 1992; DeCelles 
and Currie, 1996; Yonkee et al., 1997; DeCelles, 2004; 
Dickinson, 2004; Horton et al., 2004; DeCelles and 
Coogan, 2006; Yonkee and Weil, 2015). In contrast, 
within the broad region to the west of the Sevier 
thrust belt, often referred to as the “Sevier hinter-
land” (Fig. 1), many uncertainties remain regarding 
the magnitude, spatial distribution, and timing of 
Cordilleran contractional deformation (e.g., Taylor 
et al., 2000; Long, 2015). The paucity of informa-
tion available for this region is related to multiple 
factors, including minimal preserved exposures 
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Figure 1. Map showing Cordilleran thrust systems of Nevada 
and Utah (modified from Long et al., 2014). The approximate 
spatial extents of Cordilleran thrust systems are shaded, and 
the Sierra Nevada magmatic arc is shown in red. Exposures of 
the Cretaceous Newark Canyon Formation are shown in green. 
Abbreviations: CNTB—Central Nevada thrust belt; ENFB—East-
ern Nevada fold belt; LFTB—Luning-Fencemaker thrust belt; 
WUTB—Western Utah thrust belt.
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of Jurassic–Cretaceous synorogenic sedimentary 
rocks, locally extensive postorogenic Cenozoic 
cover, and the complex structural overprint of 
Cenozoic extension.

One debate in the Sevier hinterland focuses on 
the timing, magnitude, and spatial extent of defor-
mation in the central Nevada thrust belt (CNTB) 
(Fig. 1), a system of north-striking thrust faults 
and folds that has been interpreted as an interior 
component of the Sevier thrust system (Taylor et 
al., 2000; Long, 2012, 2015; Long et al., 2014). On 
the basis of crosscutting relationships, the timing 
of contractional deformation along much of the 
CNTB can only be broadly bracketed between Perm-
ian and Eocene (Nolan, 1962; Taylor et al., 2000). 
However, in the northern part of the CNTB, there 
are several isolated exposures of the Cretaceous 
Newark Canyon Formation (NCF) (Fig. 1). This dom-
inantly clastic unit has long been suspected to be 
related to regional contractional deformation (e.g., 
Nolan et al., 1974; Taylor et al., 2000; Druschke et 
al., 2011; Long et al., 2014) and offers an excellent 
opportunity to relate deposition directly to motion 
on thrust faults and the growth of folds.

The goal of this paper is to utilize geologic map-
ping, structural analysis, and geochronology of the 
NCF in order to elucidate the geologic evolution of 
the CNTB at the latitude of Eureka, Nevada (Fig. 2). 
To achieve this, we present a 1:24,000-scale geo-
logic map focused on exposures of the NCF in the 
southern Diamond Mountains and U-Pb zircon ages 
from detrital samples and a waterlain tuff that refine 
the timing of NCF deposition. We also present field 
observations that support a scenario of contrac-
tional deformation during NCF deposition. We then 
interpret the implications of these results in the 
larger context of the spatio-temporal development 
of the Cordilleran orogenic wedge, by integrating 
this record of hinterland deformation with the more 
well-constrained record of shortening in the frontal 
Sevier thrust belt.

■■ CORDILLERAN GEOLOGIC FRAMEWORK

Nevada and western Utah were located 
along the western margin of the North American 

continent, which underwent rifting in the Neopro-
terozoic (e.g., Dickinson, 2006). Rifting resulted in 
deposition of Neoproterozoic to Lower Cambrian 
siliciclastic sedimentary rocks within a subsiding, 
west-facing passive margin basin, followed by 
shallow-marine deposition of a carbonate-domi-
nated section between the Middle Cambrian and 
Devonian (Stewart and Poole, 1974; Poole et al., 
1992). During the Mississippian, marine slope and 

basinal sedimentary rocks were thrust eastward 
over the continental shelf in central Nevada during 
the Antler orogeny, which has been interpreted as 
the result of arc-continent collision (Speed and 
Sleep, 1982; Burchfiel et al., 1992; Poole et al., 1992; 
Dickinson, 2004, 2006). In response, an associated 
foreland basin in eastern Nevada filled with ~1.5 km 
of sediment eroded from the Antler highland to the 
west (Nolan et al., 1974; Speed and Sleep, 1982; 
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Figure 2. Geologic map of part of east-central Nevada, showing locations and names of ranges and 
valleys, and the location of the map area of Plate 1 (modified from Long et al., 2014).
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Poole et al., 1992). Following the Antler orogeny, 
shallow-marine, carbonate-dominated sedimen-
tation continued in eastern Nevada and western 
Utah until the Triassic (Stewart, 1980). A cumulative 
thickness of ~12–15 km of sedimentary rocks was 
deposited in eastern and central Nevada between 
the Neoproterozoic and the Triassic (e.g., Stew-
art, 1980).

During the Middle-Late Jurassic, the closure 
of a backarc basin in western Nevada resulted in 
construction of the east-vergent Luning-Fence-
maker thrust belt (Fig. 1) (e.g., Oldow, 1984; Wyld, 
2002). The closure of this basin was a key step in 
the consolidation of the western margin of North 
America into an east-dipping, Andean-style sub-
duction system, which initiated construction of 
the Cordilleran orogen (e.g., Allmendinger, 1992; 
Burchfiel et al., 1992; DeCelles, 2004; Dickinson, 
2004; Yonkee and Weil, 2015). The Cordillera can 
be divided into the Sierra Nevada magmatic arc 
in eastern California and a broad retroarc region 
across Nevada and western Utah (Fig. 1). In the ret-
roarc region, most of the upper-crustal shortening 
(~150–220 km) was accommodated by east-vergent, 
thin-skinned deformation within the frontal Sevier 
thrust belt in western Utah and southern Nevada 
(e.g., Lawton et al., 1993; DeCelles and Currie, 1996; 
Yonkee et al., 1997; DeCelles 2004; DeCelles and 
Coogan, 2006). In the hinterland region between the 
Luning-Fencemaker and Sevier thrust belts, three 
distinct Cordilleran structural provinces have been 
defined (Fig. 1): the Western Utah thrust belt, East-
ern Nevada fold belt, and CNTB. The Western Utah 
thrust belt accommodated ~10 km of east-vergent 
shortening and merges southward with the Sevier 
thrust belt (Greene, 2014). The Eastern Nevada fold 
belt is characterized by regional-scale, open folds, 
which are interpreted to have been constructed 
over the duration of Late Jurassic to Paleocene 
shortening in the Sevier thrust belt (Long, 2015). 
The Eastern Nevada fold belt is distinguished from 
the Western Utah thrust belt and the CNTB by an 
absence of surface-breaking thrust faults (Gans and 
Miller, 1983; Long, 2015). The CNTB consists of a 
series of north-striking, east-vergent thrust faults 
and folds that branch northward from the Sevier 
thrust belt in southern Nevada, and it is estimated 

to have accommodated ~10–15 km of shortening 
(Taylor et al., 2000; Long et al., 2014). Shortening 
in the southern part of the CNTB was completed 
by ca. 85 Ma, on the basis of crosscutting relation-
ships with Late Cretaceous granite bodies (Taylor 
et al., 2000).

Preserved synorogenic strata within the Sevier 
hinterland are exceptionally rare. In central Nevada, 
several scattered exposures of the Cretaceous NCF 
are the only known synorogenic sedimentary rocks 
(Figs. 1 and 2). In the northern part of the CNTB, 
in the region surrounding Eureka, exposures of 
the NCF are interpreted to have been deposited 
during regional contractional deformation (Nolan 
et al., 1971, 1974; Vandervoort and Schmitt, 1990; 
Carpenter et al., 1993; Druschke et al., 2011; Long et 
al., 2014), though studies directly linking deposition 
and deformation of the NCF to motion on specific 
CNTB structures are lacking.

During the Late Cretaceous and Paleogene, 
eastern Nevada is interpreted to have been a high 
(up to ~3 km elevation) orogenic plateau (e.g., 
Coney and Harms, 1984; DeCelles, 2004; Best et al., 
2009; Cassel et al., 2014; Snell et al., 2014), termed 
the “Nevadaplano” (e.g., DeCelles, 2004). Crustal 
thicknesses up to 50–60 km are estimated to have 
been attained in eastern Nevada by the time short-
ening terminated in the Sevier thrust belt during the 
Paleocene (Coney and Harms, 1984; DeCelles, 2004; 
Long, 2019). Despite its high elevation, however, the 
Nevadaplano experienced minimal synorogenic 
erosion (up to ~2–3 km) (Long, 2012).

During the Late Eocene and Oligocene, a 
northeast to southwest migration of magmatism 
known as the Great Basin ignimbrite flare-up swept 
across Nevada and is interpreted to be related to 
post-Laramide rollback of the Farallon slab (e.g., 
Humphreys, 1995; Best et al., 2009; Smith et al., 
2014). During the ignimbrite flare-up, several areas 
in eastern Nevada experienced localized extension 
(e.g., Gans and Miller, 1983; Druschke et al., 2011; 
Lee et al., 2017; Long et al., 2019; Long, 2019). How-
ever, paleoaltimetry data indicate that elevations 
were still high (~2.5–3.5 km) during, and possibly in 
response to, the ignimbrite flare-up, and therefore 
the Nevadaplano still existed during the mid-Ceno-
zoic (Cassel et al., 2014).

Most of the widespread extension that con-
structed the Basin and Range Province, which 
is the tectonic setting that presently defines this 
region, took place from the middle Miocene to pres-
ent (e.g., Dickinson, 2002; Colgan and Henry, 2009; 
Long, 2019). Basin and Range extension has been 
attributed to the reorganization of the Pacific–North 
American plate boundary from an Andean-style 
subduction system to a continental transform sys-
tem (e.g., Atwater, 1970; Dickinson, 2002, 2006).

■■ PREVIOUS INTERPRETATIONS OF THE 
CNTB AND NCF IN THE EUREKA REGION

At the latitude of the town of Eureka (~39°N), 
CNTB deformation was accommodated by a 
series of N-striking, E-vergent contractional struc-
tures. These include, from west to east, the Eureka 
culmination, Sentinel Mountain syncline, and Mori-
tz-Nager thrust (Fig. 3). The Eureka culmination is 
a regional-scale anticline, which is interpreted as 
a fault-bend fold constructed above a blind thrust 
that is defined by a Cambrian over Silurian rela-
tionship observed in drill holes (Long et al., 2014). 
Exposed in the western part of the Diamond Moun-
tains, the Sentinel Mountain syncline is an open 
fold that deforms Devonian–Mississippian rocks 
(Nolan et al., 1974; Long et al., 2014). The Sentinel 
Mountain syncline lies in the hanging wall of the 
Moritz-Nager thrust, which is a steeply W-dipping 
fault with ~1–2 km of offset that places Devonian 
rocks over Mississippian rocks (French, 1993; Long 
et al., 2014).

In the Diamond Mountains, the NCF was 
originally interpreted to have a Carboniferous dep-
ositional age, on the basis of freshwater gastropods 
(Hague, 1892). Later, MacNeil (1939) assigned these 
gastropods to the Lower Cretaceous. The name 

“Newark Canyon Formation” originated from Nolan 
et al. (1956), who were the first to map the extent 
of the NCF surrounding Eureka (Nolan et al., 1971, 
1974). Following this, Fouch et al. (1979), based 
on observations of a variety of fossils, including 
gastropods, bivalves, ostracods, fish, charophytes, 
angiosperms, and palynomorphs, interpreted an 
Aptian–Albian deposition age for the NCF. More 
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recently, using U-Pb dating of zircons from samples 
collected along the NCF type section in the Dia-
mond Mountains, Druschke et al. (2011) obtained a 
maximum depositional age of 120.7 ± 3.2 Ma from 
a sandstone in the middle of the section and a 116 
± 1.6 Ma deposition age from a waterlain tuff higher 
in the section.

■■ STRATIGRAPHY AND DEPOSITIONAL 
AGE OF THE NCF

In order to resolve the depositional and deforma-
tional history of the NCF, and how it relates to CNTB 
deformation, we present new 1:24,000-scale map-
ping (Plate 1), stratigraphic divisions, conglomerate 
clast compositions, and U-Pb zircon geochronology 
from two exposures of the NCF in the southern Dia-
mond Mountains (Figs. 2 and 3). The southern of the 
two exposures, which contains the type section in 
Newark Canyon as originally defined by MacNeil 
(1939), is referred to here as the “type exposure” 
(Fig. 4; Plate 1). To the north of the type exposure, 
along the western flank of the Diamond Mountains, 
is a large exposure of the NCF referred to here as 
the “Hildebrand exposure,” which is named after 
Hildebrand Canyon (Fig. 4; Plate 1).

Lithostratigraphic Divisions

Based on lithologic and stratigraphic relation-
ships observed in our mapping (five members of the 
NCF were defined), a stratigraphic architecture has 
been outlined that is broadly consistent between 
both exposures. While the general lithologic 
characteristics of these members are consistent 
throughout the NCF exposures in the southern Dia-
mond Mountains, the different lithofacies within 
each member are not laterally extensive and often 
interfinger at the meter-scale. These informal mem-
bers of the NCF are primarily defined by unique 
conglomerate clast compositions, in addition to 
characteristics lithofacies. In the type exposure, 
the basal member (Knc1) is ~100–120 m thick and 
is characterized by pebble-rich, dominantly mas-
sive micrite and siltstone with interbedded lenses 

of clast-supported, crudely bedded to cross-strati-
fied, pebble to cobble conglomerate. Conglomerate 
lenses are ~1–2 m thick and laterally discontinuous 
(often terminating within ~5–10 m), and they often 
exhibit convex scoured basal contacts (Fig. 4). Mem-
ber Knc1 overlies Permian sedimentary rocks across 
a low-angle (≤~10°) angular unconformity observed 
on the eastern side of the type exposure. Member 
Knc1 fines upward into sandstone, siltstone, and 

silty-sandy micrite of member Knc2, which is ~80–
130 m thick. The contact between Knc1 and Knc2 is 
gradational over an ~3–4 m stratigraphic thickness. 
Above Knc2, member Knc3 consists of ~110 m of 
cross-stratified, chert-clast dominant, pebble to 
cobble conglomerate, with interbedded medium- to 
coarse-grained, cross-bedded sandstone. Member 
Knc4, which is only exposed at the northern end of 
the type exposure, consists of thinly interbedded 
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Plate 1. Geologic map (1:24,000 scale) of the southern 
Diamond Mountains. Newark Canyon Formation (NCF) 
exposures include the Hildebrand exposure in the north 
and the type exposure in the south. To view Plate 1 at 
full size, please visit https://doi.org​/10.1130​/GES02168​
.p1 or access the full-text article on www.gsapubs.org.

Plate 1. Geologic map (1:24,000 scale) of the 
southern Diamond Mountains. Newark Can-
yon Formation (NCF) exposures include the 
Hildebrand exposure in the north and the 
type exposure in the south. To view Plate 1 at 
full size, please visit https://doi.org​/10.1130​
/GES02168.p1 or access the full-text article on 
www​.gsapubs.org.
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micrite and calcareous siliciclastic mudstone with 
abundant fossil hash. A minimum thickness of 
~70 m of Knc4 is exposed, and its upper contact is 
concealed beneath Paleogene volcanic rocks.

In the type exposure, members Knc1 through 
Knc4 define a conformable section. However, within 
Knc3, there is evidence for a local progressive 
(i.e., syndeformational; Riba, 1976) unconformity, 
where outcrops of ledge-forming conglomerate 
exhibit a shallower (~17°W) over steeper (~40°W) 
dip relationship (Fig. 5A). The youngest member 
in the type exposure is Knc5, which consists of 
several isolated outcrops of crudely bedded, sand 
matrix-supported, pebble to cobble conglomer-
ate with abundant quartzite clasts (Fig. 4; Plate 1). 
Member Knc5 overlies member Knc3 across an 
angular unconformity with ~10°–20° of difference in 
dip angle (Fig. 5B), which projects westward above 
member Knc4. Based on this angular basal contact, 
distinct clasts of white quartzite, and a significantly 
younger maximum depositional age obtained from 
this unit (described in the following section), we 
interpret Knc5 to be the youngest member of the 
NCF in the Diamond Mountains. The top of Knc5 is 
not exposed, and a minimum thickness of ~15 m 
is preserved.

Vandervoort (1987) collected paleocurrent data 
from the NCF in the type exposure, using pebble 
and cobble-clast imbrication and trough long-
axis and planar cross-bedding orientations, which 
yielded a dominant ENE-directed flow direction 
(average azimuth of ~076°).

To the north, the eastern part of the Hildebrand 
exposure exhibits a conformable section of Knc 
members 1–3, which have many lithologic simi-
larities compared to the type exposure, but with a 
few key differences (Fig. 4). One lithologic differ-
ence is that Knc1 lacks micrite in the Hildebrand 
exposure and instead consists primarily of peb-
ble to cobble, carbonate-clast conglomerate with 
a distinct basal mudstone. An additional differ-
ence is observed in Knc2, which in the Hildebrand 
exposure is dominated by sandstone and chert-rich 
pebbly sandstone intervals and lacks the micrite 
intervals observed in the type exposure. The base 
of Knc1 is exposed in two places in the eastern part 
of the Hildebrand exposure, where Knc1 overlies 

Permian sedimentary rocks across a contact with 
up to ~20° of dip difference (Plate 1). Members 
Knc1–3 all exhibit a significant northward thicken-
ing between the type exposure and the Hildebrand 
exposure, with Knc1 thickening from ~100 m to 
~400 m, Knc2 from ~100 m to ~250 m, and Knc3 
from ~115 m to ≥~420 m (Fig. 6).

On the western side of the Hildebrand exposure, 
members Knc1 and Knc2 are exposed in the hang-
ing wall of a down-to-the-west normal fault (Plate 
1). Knc1 consists of a basal mudstone overlain by 
clast-supported, cobble conglomerate rich in car-
bonate clasts; the member is up to ~200 m thick. At 
the northwestern end of the Hildebrand exposure, 
Knc1 overlies Permian sedimentary rocks across an 
angular unconformity (Plate 1). Knc1 is conform-
ably overlain by Knc2, which consists of chert-rich, 
pebbly sandstone and clast-supported conglomer-
ate, and has a minimum thickness of ~405 m.

U-Pb Zircon Geochronology

In order to obtain more precise constraints on 
the depositional timing of the NCF, we collected six 
samples for U-Pb dating of zircon (locations shown 
on Plate 1); five were detrital samples, while one 
sample was from a tuffaceous horizon (see Table S11 
in the Supplemental Material for GPS locations). 
Sample 1 was collected from a sandstone interval 
within the basal mudstone of Knc1 in the western 
part of the Hildebrand exposure. Sample 2 was col-
lected from the matrix of the basal conglomerate 
of Knc1 in the type exposure. Sample 3 was col-
lected from a coarse-grained sandstone at the top 
of Knc3 in the type exposure. Sample 4 is from a 
fine-grained sandstone near the top of Knc3 in the 
eastern part of the Hildebrand exposure. Euhedral 
zircons were picked and analyzed from sample 5, 
which was collected from a reworked waterlain tuff 
within Knc4 in the type exposure. Sample 6 is from 
a sandstone horizon within a quartzite-clast con-
glomerate from Knc5 in the type exposure.

Zircons were obtained by standard mineral sep-
aration methods, including crushing, disc grinding, 
and water table, magnetic, and heavy liquid sepa-
ration. Zircons were mounted in epoxy resin and 

polished and cathodoluminescence (CL)-imaged 
using an electron microprobe at Washington State 
University (WSU). The zircons were analyzed using 
laser ablation–inductively coupled plasma mass 
spectrometry (LA-ICPMS). Analyses were per-
formed at the WSU radiogenic isotope laboratory. 
This method yields ages with a typical 2-sigma error 
range of ~1%–2% (e.g., Chang et al., 2006; Geh-
rels et al., 2008). Between 61 and 151 zircons were 
analyzed from each detrital sample, and 35 euhe-
dral zircons were analyzed from the waterlain tuff 
(sample 5). Zircon recovered from all six samples 
generally consisted of small (~35–150 μm c-axis) 
grains. Grains with visible inclusions and fractures 
were not analyzed in an effort to avoid potential 
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compromised radiogenic isotope compositions 
(e.g., Pb-loss). The 207Pb/206Pb age was used for 
grains older than 900 Ma, while the 206Pb/238U age 
was used for grains younger than 900 Ma. Grains 
that yielded ages 900 Ma and older were allowed 
up to 15% positive discordance or 5% negative dis-
cordance in order to not be discarded, and grains 
that were younger than 900 Ma but older than 300 
Ma were allowed up to 20% positive discordance 
or 10% negative discordance (Gehrels et al., 2008). 
Because of the difficulty in calculating discordance 
for grains younger than 300 Ma, due to the linear-
ity of the concordia curve and the uncertainty of 
measurement of 207Pb (Bowring and Schmitz, 2003), 
we allowed 25% positive discordance or 20% neg-
ative discordance for grain ages <300 Ma. For the 
detrital zircon samples, between 15% and 48% of 
the analyzed grains displayed large uncertainty 
and/or unacceptable discordance; these analyses 
were discarded. Using the program Isoplot (Ludwig, 
2008), detrital zircon ages were plotted on proba-
bility density plots (Fig. 7), and the ages from the 
tuff (sample 5) were plotted on a concordia dia-
gram (Fig. 8).

We utilized weighted-mean ages of the youngest 
coherent populations of zircon grains to calculate 
maximum depositional ages (MDAs) for our five 
detrital samples. However, among the potential 
issues inherent in this method is the possibility of 
unidentified Pb-loss and contamination in the field 
or laboratory (e.g., Bowring and Schmitz, 2003; 
Coutts et al., 2019). In an effort to alleviate this issue, 
we used the weighted-mean age of the five young-
est grains that overlap within 1σ uncertainty (the 

“YC1σ(2+)” or “youngest 1σ grain cluster” method 
of Dickinson and Gehrels (2009), which was recently 
interpreted by Coutts et al. (2019) as yielding conser-
vative, but still statistically robust, MDA estimates) 
to calculate MDAs.

Detrital zircons from sample 1, collected from 
Knc1 in the Hildebrand exposure, yielded a prom-
inent youngest peak centered at ca. 115 Ma and 
older peaks at ca. 1.0–1.2 Ga and ca. 1.4–1.6 Ga, 
with the oldest grains at ca. 2.6–2.7 Ga (Fig. 7). The 
youngest five overlapping grains from this sample 
yielded an MDA of 113.7 ± 2.3 Ma. Detrital zircons 
analyzed from sample 2, collected from Knc1 in the 
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type exposure, yielded age groups between ca. 1.0 
and ca. 2.8 Ga, including a prominent peak at ca. 
1095 Ma, and a series of minor peaks between ca. 
1.5 and ca. 1.8 Ga and ca. 2.6–2.7 Ga (Fig. 7). The lack 
of Mesozoic grains in sample 2 could be due, in part, 
to poor zircon abundance because this sample was 
collected from the matrix of a conglomerate hori-
zon. Because no Mesozoic grains were obtained, 
we did not calculate an MDA for this sample. Detri-
tal zircons from sample 3, collected from Knc3 in 
the type exposure, yielded a prominent youngest 
peak centered at ca. 114 Ma, with older age groups 
between ca. 0.4 and ca. 2.7 Ga, robust peaks at ca. 
1.2 Ga and ca. 1.8 Ga, and a small age group at ca. 
2.7 Ga (Fig. 7). The five youngest overlapping grains 
from this sample yielded an MDA of 112.9 ± 1.0 Ma. 
Detrital zircons from sample 4, collected from Knc3 
within the Hildebrand exposure, yielded a youngest 
peak centered at ca. 107 Ma, a prominent peak at 
ca. 152 Ma, and older age groups between ca. 0.4 
and ca. 2.7 Ga (Fig. 7). The youngest five overlap-
ping grains from this sample yielded an MDA of 
106.0 ± 1.5 Ma.

Sample 5 was collected from a lithology inter-
preted as a reworked waterlain tuff within member 
Knc4 in the type exposure. This interpretation is sup-
ported by the presence of tricuspid volcanic glass 
shards within the sample, which suggests minimal 
reworking after deposition of the tuffaceous com-
ponent. Additionally, this same interval was also 
interpreted as a waterlain tuff by Druschke et al. 
(2011). Thirty-five >100 μm c-axis euhedral zircons 
from this sample were analyzed (see supporting 
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information for a CL image), 16 of which were dis-
carded for exceeding the defined discordance cutoff. 
The resulting ages are clustered into two age groups 
(Fig. 8), with the youngest six grains defining a coher-
ent, overlapping population with a concordia age of 
103.0 ± 0.7 Ma, and the oldest 13 grains defining a 
distribution of ages between ca. 115 and ca. 130 Ma. 
We interpret the 103.0 ± 0.7 Ma age of the youngest 
group to represent the actual age of deposition of 
Knc4. The older age group of zircons (ca. 115–130 Ma) 
could be the result of older in situ zircon evacuated 
by a younger eruptive event from the same eruptive 
center, or perhaps from incorporation of older zir-
cons from erosion of underlying NCF members. This 
same tuffaceous horizon was also dated by Druschke 
et al. (2011), who obtained a youngest age group of 
zircons centered at 116 ± 1.6 Ma.

Finally, detrital zircons from sample 6, collected 
from Knc5 in the type exposure, yielded a promi-
nent peak centered at ca. 105 Ma, and a series of 
smaller peaks distributed between ca. 0.4 and ca. 
2.7 Ga, with a prominent peak at ca. 1.2 Ga (Fig. 7). 
The youngest five overlapping grains yielded an 
MDA of 98.6 ± 1.9 Ma.

In summary, our new U-Pb ages indicate that 
deposition of the basal member of the NCF (Knc1) 
occurred no earlier than ca. 114 Ma, deposition of 
member Knc3 occurred no earlier than ca. 106 Ma, 
Knc4 was being deposited at ca. 103 Ma, and depo-
sition of the youngest member (Knc5) occurred 
no earlier than ca. 99 Ma. Therefore, deposition 
spanned from possibly as early as the late Aptian 
until at least the early Cenomanian.

■■ STRUCTURAL GEOMETRY OF NCF 
EXPOSURES

In this section, the deformation geometry of the 
two NCF exposures, as well as proximal areas of 
the Diamond Mountains, are described. This discus-
sion is supported by three cross sections (Figs. 9–11; 
lines of section shown on Plate 1).

Type Exposure

In the type exposure, the NCF is folded into an 
open, E-vergent syncline with a steeply dipping (~60–
90°E, but locally overturned) western limb and an 
eastern limb that dips moderately (~25°) to the west 
(Figs. 9 and 10). The western limb lies in the footwall of 
a previously unmapped, ~60° W-dipping, top-to-the-E 
reverse fault, here named the “Powerline thrust.” The 
Powerline thrust places Permian rocks in its hanging 
wall against Knc2 in its footwall, defining an older-
over-younger relationship. In the hanging wall of the 
Powerline thrust, Permian rocks are deformed into 
an E-vergent anticline, here named the “Strahlen-
berg anticline,” which has a ~60°–90°–dipping eastern 
limb and a ~40°–50°–dipping western limb (Figs. 9 
and 10). The basal unconformity of the NCF on the 
eastern side of the type exposure overlies Permian 
rocks and exhibits a minimal (~0°–10°) difference in 
dip angle (Figs. 9 and 10).

When displacements on normal faults are ret-
ro-deformed and the basal NCF unconformity in the 
eastern limb of the syncline is restored to horizontal 
(Figs. 9B and 10B), the overall deformation geometry 
defines the asymmetric Strahlenberg anticline with a 
steeply dipping (~80° E) eastern limb. Based on this 

geometry, we interpret that this anticline was most 
likely constructed as a fault-propagation fold (e.g., 
Suppe and Medwedeff, 1990) above an E-vergent 
thrust fault that tips out in the subsurface (Figs. 9 and 
10). We interpret that the Powerline thrust represents 
a small-offset (~100 m), high-angle breakthrough 
thrust fault (e.g., Suppe and Medwedeff, 1990, their 
figure 11E) that branches upward from the blind 
thrust at depth. Based on our interpreted subsur-
face geometry, the blind thrust may root westward 
into a flat within Mississippian rocks. The Missis-
sippian section consists dominantly of shale and 
sandstone, with a lesser abundance of conglom-
erate and thin-bedded limestone. The rheological 
contrast between the Mississippian clastic units, in 
particular the Mississippian Chainman shale in the 
lower part of the section, and the thick-bedded car-
bonates of the overlying Pennsylvanian–Permian 
section and underlying Devonian section, provides 
an ideal weak stratigraphic interval for exploitation 
as a detachment horizon. The approximate depth to 
the detachment is constrained by the geometry of 
the fault-propagation fold, specifically the structural 
height of the steep forelimb (e.g., Suppe and Med-
wedeff, 1990, their figure 11E).

Normal faulting overprints all contractional struc-
tures in the map area (Figs. 9–11; Plate 1). The normal 
faults in the map area are difficult to precisely date 
using crosscutting relationships. However, several 
down-to-E normal faults on the eastern flank of the 
Diamond Mountains are interpreted to be related to 
the Neogene subsidence of adjacent Newark Valley 
(Figs. 2 and 3) (e.g., Nolan et al., 1971, 1974). Tilting 
accompanying motion on these normal faults is 
interpreted as the most likely mechanism for pro-
ducing the westward dips observed in the eastern 
limb of the syncline within the NCF type exposure. 
However, it is also possible that some of this tilting 
accompanied regional contractional deformation in 
the CNTB, including the growth of folds to the east 
of the map area (e.g., Long, 2015).

Hildebrand Exposure

The Hildebrand exposure can be divided into 
western and eastern domains that are separated 
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by a N- to NNE-striking, down-to-W normal fault 
(Fig. 11; Plate 1). On the west side of the fault, Knc1 
and Knc2 dip moderately (~20°–30°) to the east. On 
the east side of the fault, a steeply E-dipping (locally 
vertical to overturned) section of Knc1 gradually 
shallows in dip angle to the east, and transitions into 
a gently (~10°–20°) E-dipping section of members 
Knc2 and Knc3. In the eastern part of the Hildebrand 
exposure, Permian rocks are observed below the 
basal NCF unconformity in two places, lying below 
Knc1 across a contact with minimal difference in dip 
angle (Plate 1). On the northwestern end of the expo-
sure, folded Permian rocks underlie Knc1 across an 
unconformity with up to ~20° of difference in dip 
angle (Fig. 11). On the eastern edge of the exposure, 
the NCF is cut by a down-to-west normal fault with 
~1.2 km of offset that bounds the western side of the 
Diamond Mountains (Fig. 11; Plate 1).

Similar to the type exposure, we interpret that 
the structural geometry of the Hildebrand expo-
sure can be most easily explained by growth of 
the E-vergent Strahlenberg anticline (Fig. 11). In 
our subsurface interpretation, the steeply E-dipping 
section of Permian rocks and Knc1 lie in the fore-
limb, and the gently E-dipping section of Permian 
rocks and Knc1 and Knc2 on the western edge of 
the exposure lie in the back limb. Knc1 and Knc2 
are thinner above the crest zone of the Strahlenberg 
anticline than they are in the forelimb (Figs. 6 and 
11), which implies deposition during folding.

To the east of the Hildebrand exposure, in the 
Diamond Mountains, there is additional evidence 
for folding that predates NCF deposition. An open 
anticline is observed in Mississippian rocks, and 
exposures of Knc2 and Knc3 that project over its 
western limb exhibit a consistent eastward dip 
(Fig. 11; Plate 1). Balancing constraints, including 
the lack of westward dips observed in Knc2 and 
Knc3, require an angular unconformity at the base 
of the NCF over the western limb of the anticline. 
This indicates that the Diamond Mountains were 
subjected to some contractional deformation and 
erosion prior to NCF deposition. This is consis-
tent with observations of folds distributed across 
eastern Nevada that in most places can only be 
bracketed as post-Permian or post-Triassic (Long, 
2015), including several folds documented farther 

to the north in the Diamond Mountains (Larsen and 
Riva, 1963; Nolan et al., 1971).

■■ ADDITIONAL OBSERVATIONS 
SUPPORTING SYNCONTRACTIONAL 
DEPOSITION OF THE NCF

In addition to the details on the structural geom-
etry of the NCF exposures described above, the 
following field relationships also support a scenario 
of deposition of the NCF during the progressive 
growth of folds in the Diamond Mountains:

1. Progressive Unconformity within Knc3

In the eastern limb of the syncline in the NCF 
type exposure, ledge-forming conglomerate beds 
within Knc3 exhibit an intraformational, shallow 
(~17°W dip) over steep (~40°W dip) bedding rela-
tionship (Fig. 5A; Plate 1). This angular relationship 
is interpreted as the result of active sedimentation 
during progressive growth of the syncline in the 
type exposure and the associated Strahlenberg 
anticline to the west. We interpret this relation-
ship to be indicative of growth strata within the 
NCF, because it is preserved within a single mem-
ber (Knc3), which likely represents a minimal time 
lapse across the angular contact. In contrast, the 
angular unconformity at the base of member Knc5 
(described below) is not interpreted to represent 
a growth relationship, because this contact sepa-
rates different members (Knc5 from Knc2–4), thus 
indicating a substantial hiatus.

2. Angular Unconformity at the Base of Knc5

In the type exposure, five separate outcrops of 
Knc5, distributed over a N-S distance of ~4.5 km, 
consistently exhibit a westward dip that is between 
~10°–20° shallower than the homogeneously W-dip-
ping section of Knc1–3 below (Figs. 5B and 9; Plate 
1). This angular unconformity, when combined with 
the U-Pb zircon geochronology presented above 
that requires Knc5 to have been deposited at least 

~4 m.y. after deposition of Knc 4, is interpreted as 
the result of NCF deposition spanning the long-
term growth of the syncline in the type exposure 
and associated Strahlenberg anticline to the west.

3. Unroofing Sequence Recorded in Clast 
Compositions of NCF Conglomerate

To provide information on the source rocks 
that were being eroded during NCF deposition, 
clast composition counts (e.g., Dickinson, 1974, 
1988; DeCelles, 1994; Horton et al., 2004) were per-
formed from both NCF exposures (Fig. 4; Plate 1). 
Clast counts were performed at 16 conglomerate 
outcrops from all NCF members except for the 
carbonate-dominated Knc4 (locations of individ-
ual clast count sites are shown on Plate 1, GPS 
locations of each site are listed in Table S1 [foot-
note 1] in the Supplemental Material, and data from 
individual clast counts are shown in Figure S1 in 
the Supplemental Material). In each analysis, 100 
clasts that were each ~3 cm or larger in diameter 
were counted within a ~1 m2 area. Clast lithology 
categories included chert, carbonate, sandstone, 
quartzite, and pebble conglomerate. It is likely that 
less competent lithologies such as mudstone and 
fine-crystalline carbonate are under-represented in 
our clast counts, while more competent lithologies 
such as quartzite and chert may be over-represented 
due to respective differential weathering. The clast 
count data are shown in pie charts on Figure 4, with 
counts from each NCF member in each exposure 
combined into a single pie chart.

The clast populations from Knc1 are dominated 
(~62%–77% range) by coarse-crystalline, fossil-​
bearing carbonate clasts (Fig. 4). Many clasts contain 
fusilinids and brachiopods, which we interpret to 
have been sourced from Pennsylvanian–Permian 
carbonates. Members Knc2 and 3 yielded clast 
compositions dominated (~49%–59% range) by sub-
rounded chert clasts, and member Knc5 exhibits a 
robust population (~28%) of white quartzite clasts 
(Fig. 4).

We interpret the fusilinid- and brachiopod-​
bearing carbonate clasts from member Knc1, 
which directly overlies Permian rocks, to have been 
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derived from erosion of proximal Pennsylvanian 
to Permian, post-Antler, passive margin carbon-
ates (Fig. 12). The chert-rich clast populations from 
members Knc2 and 3 are interpreted to have been 
sourced from erosion of proximal Mississippian 

sedimentary rocks of the Antler foreland basin; 
these rocks contain chert-rich conglomerates 
originally derived from erosion of the Roberts 
Mountains allochthon to the west (e.g., Nolan 
et al., 1974). The white quartzite clasts in member 

Knc5 are interpreted to have been derived from 
erosion of the proximal Devonian section, which 
contains two white quartzite units (the Oxyoke 
Canyon Sandstone and the basal quartzite of the 
Beacon Peak member of the Nevada Formation; 
e.g., Nolan et al., 1974). We cannot rule out erosion 
of the Ordovician Eureka quartzite as a potential 
source, though we consider erosion of the strati-
graphically higher Devonian section more likely 
due to limited syn-Cordilleran erosion in this region 
of Nevada (e.g., Long, 2012).

Based on these clast provenance interpreta-
tions, the NCF clast composition data define a 
three-part unroofing sequence, recording progres-
sively deeper levels of the Paleozoic section being 
unroofed during NCF deposition. We interpret that 
the simplest scenario that explains this data is the 
growth and progressive erosional denudation of 
the crest zone of the Eureka culmination, which was 
located ~10–15 km to the west of the NCF exposures 
(Fig. 12). This regional-scale anticline, which was 
structurally elevated as much as ~4–5 km relative 
to the surrounding region, has been previously 
interpreted to have been constructed during NCF 
deposition (Long et al., 2014). Mapping ~10 km to 
the southwest of our map area shows that rocks 
as young as Permian are preserved in the east-
ern limb of the culmination, indicating that these 
rocks were still preserved at the surface during 
initial fold growth (Long et al., 2014). Erosion of 
its crest zone would have progressively exhumed 
deeper Paleozoic stratigraphic levels through time, 
from Permian–Pennsylvanian carbonates, to Mis-
sissippian chert-rich clastics, to Devonian rocks that 
contain white quartzite. This unroofing is inversely 
reflected in the bottom-up NCF member stacking 
order (Fig. 12) and provides a record of localized 
erosion, transport, and deposition associated with 
CNTB deformation at this latitude.

4. Along-Strike Thickness Changes in 
NCF Members

Stratigraphic thicknesses (as measured from 
map patterns and cross sections) exhibit significant 
along-strike variations over short map distances 
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(Fig. 6), both for individual NCF members and for 
the cumulative thickness of the NCF section. In 
the type exposure, the NCF reaches a maximum 
preserved thickness of ~525–600 m, and in the Hil-
debrand exposure the preserved thickness is as 
much as ~870–1045 m. Within the type exposure, 
over a N-S distance of ~5 km, Knc1 increases in 
thickness southward from ~55 to ~160 m, Knc2 var-
ies between ~65 and ~115 m-thick, and Knc3 varies 
between ~95 and >~185 m thick. In the Hildebrand 
exposure, Knc1 and 2 are cumulatively thicker (~635 
m) in the forelimb of the Strahlenberg anticline and 
thin (~450 m) to the west over its crest zone. In 
the northwestern part of the Hildebrand exposure, 
the entire ~240 m thickness of Knc1 thins abruptly 
across a buttress unconformity with Permian rocks 
(Plate 1). We interpret these thickness differences as 
the likely result of changes in accommodation mag-
nitude that were controlled by the growth of the 
Strahlenberg anticline and proximal CNTB struc-
tures to the west, such as the Moritz-Nager thrust.

■■ DISCUSSION

Interpretations of NCF Basin Evolution and 
Relationship to Regional CNTB Deformation

Syntectonic basins offer important records of 
the processes and timing of deformation within 
orogenic belts (e.g., Dickinson, 1974, 1988). Here, 
we synthesize the observations and data pre-
sented above to generate a model that describes 
the evolution of NCF deposition and associated 
CNTB contractional deformation in the southern 
Diamond Mountains.

The progressive unconformity within Knc3 in 
the type exposure (Fig. 5A), as well as the angu-
lar unconformity between Knc3 and Knc5 (Fig. 5B), 
are interpreted as the result of active NCF sedi-
mentation over the duration of construction of 
the Strahlenberg anticline. The angular contact 
between Knc3 and Knc5 represents both a dep-
ositional hiatus and evidence for folding between 
deposition of these two members. We interpret that 
uplift of the crest zone of the Strahlenberg anti-
cline, and accompanying subsidence of its eastern 

limb, was the primary mechanism for generating 
accommodation space (Fig. 13). The NCF was pro-
gressively deposited by sedimentary infilling within 
the topographic low generated to the east of the 
Strahlenberg anticline. The minimum amount of 
accommodation space created by folding can be 
estimated by the cumulative thickness of the NCF, 
which varies between ~525 m in the type section 
and ~1045 m in the Hildebrand exposure. The depo-
sition of Knc1 and Knc2 over the crest zone of the 
Strahlenberg anticline (Fig. 11), clast compositions 
that indicate progressive erosional unroofing from 
Permian down to Devonian stratigraphic levels 
(Fig. 12), and east-directed paleocurrents (Vander-
voort, 1987) indicate that the NCF was likely sourced 
from erosion of topographically uplifted areas to 
the west. This uplift was likely generated by motion 
on the Moritz-Nager thrust and growth of the 
Eureka culmination (Fig. 13).

Conglomerate-clast composition data from 
the NCF record the progressive unroofing of the 
source area to the west, from Pennsylvanian–Perm-
ian stratigraphic levels during deposition of Knc1, 
to Mississippian levels during deposition of Knc2 
and Knc3, to Devonian levels during deposition of 
Knc5 (Figs. 12 and 13). We interpret that growth and 
accompanying erosional denudation of the Eureka 
culmination ~10–15 km to the west (Long et al., 2014) 
is the most likely scenario that explains these clast 
count data. Therefore, we interpret that the NCF was 
sourced locally, and represents proximal deposi-
tion to the east of the Eureka culmination, with the 
geometry of the depocenter controlled by small-
er-offset CNTB structures including the Moritz-​Nager 
thrust and Strahlenberg anticline. This anticline is 
interpreted as an E-vergent fault-​propagation fold 
that formed above a blind thrust fault that likely 
roots westward into a flat in Mississippian rocks. In 
the type exposure, the forelimb of the Strahlenberg 
anticline has been breached by the Powerline thrust, 
a steeply W‑dipping fault with ~100 m of offset.

An approximate shortening estimate can be 
calculated by compiling displacement magni-
tudes on CNTB contractional structures that are 
proximal to the NCF in the Diamond Mountains 
(Plate 1). Construction of the Strahlenberg anticline 
and motion on the associated Powerline thrust are 

estimated here to have a total of ~2.5 km of top-to-
east displacement (Figs. 9 and 10). To the west, the 
Moritz-Nager thrust has an estimated top-to-east 
displacement of ~1.0–1.8 km, and the Eureka cul-
mination was interpreted to have been constructed 
by ~9 km of top-to-east displacement on the blind 
Ratto Canyon thrust (Long et al., 2014). Together, 
these structures account for ~12.5–13.3 km of short-
ening (~18%) in the CNTB at this latitude.

Our new U-Pb zircon timing constraints have 
significantly revised the depositional history of the 
NCF at this latitude. Our geochronology indicates 
that deposition of the basal mudstone of Knc1 took 
place no earlier than ca. 114 Ma, Knc3 deposition 
occurred no earlier than ca. 106 Ma, deposition of 
Knc4 was under way at ca. 103 Ma, and deposition 
of Knc5 occurred no earlier than ca. 99 Ma. These 
new U-Pb zircon age data provide new information 
on the timing and duration of contractional defor-
mation within the CNTB at this latitude; this new 
information can be placed in the larger framework 
of the space-time patterns of strain accommodation 
within the Cordilleran orogen.

Implications of CNTB Timing for Strain 
Partitioning within the Cordilleran Orogenic 
Wedge

To the east in Utah, the Sevier thrust belt accom-
modated upper-crustal shortening over the duration 
of Cordilleran orogenesis, spanning from the lat-
est Jurassic to the Paleocene (e.g., DeCelles, 2004; 
Yonkee and Weil, 2015). The Sevier thrust belt is 
characterized by an overall forward-​breaking 
sequence of east-vergent thrust faults, punctuated 
by episodic out-of-sequence thrust reactivation and 
culmination growth (e.g., DeCelles et al., 1995; Cur-
rie 2002; DeCelles and Coogan; 2006). The Sevier 
thrust belt is characterized by initial emplacement 
of a thick, spatially extensive, western thrust sheet, 
which carries an ~10–15-km-thick section of Neo-
proterozoic–Mesozoic sedimentary rocks that were 
deposited west of the Wasatch hingeline (e.g., Yon-
kee and Weil, 2015). Emplacement of this extensive 
thrust sheet was followed by emplacement of multi-
ple, thinner, smaller-offset thrust sheets toward the 
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foreland; these sheets deform an ~2–5-km-thick sec-
tion of Paleozoic–​Mesozoic sedimentary rocks that 
were deposited to the east of the Wasatch hingeline 
(e.g., DeCelles, 2004; DeCelles and Graham, 2015; 
Yonkee and Weil, 2015).

At the latitude of our study area (~39°N), the total 
shortening accommodated in the Sevier thrust belt 
is estimated at 220 km (DeCelles and Coogan, 2006). 
Deformation in the Sevier thrust belt initiated with 
displacement on the Canyon Range thrust between 
ca. 145–110 Ma (Fig. 14). The Canyon Range thrust 
carries an ~15-km-thick Neoproterozoic–Mesozoic 
section and accommodated as much as ~117 km 

of E-vergent displacement (Currie, 2002; DeCelles 
and Coogan, 2006). Based on subsurface geomet-
ric constraints, it is likely that this offset estimate 
is a maximum (e.g., DeCelles and Coogan, 2006), 
and the ca. 145 Ma estimate for the timing of initial 
slip on the Canyon Range thrust could also be a 
maximum (e.g., Yonkee and Weil, 2015). Initiation 
of motion on the Canyon Range thrust represented 
an ~300 km eastward jump in the Cordilleran thrust 
front, as estimated from the restored distance 
between the Luning-Fencemaker thrust belt in 
western Nevada and the trace of the Canyon Range 
thrust in west-central Utah on the restored cross 

section of Long (2019). This defines an accretion 
event that incorporated the upper crust of much 
of Nevada and western Utah.

Following emplacement of the Canyon Range 
thrust, deformation migrated foreland-ward to the 
Pavant thrust system, which carries the much thin-
ner (≤~5 km) section of Paleozoic–Mesozoic rocks 
deposited east of the Wasatch hingeline (DeCelles 
et al., 1995; Currie, 2002). This consisted of displace-
ment on the Pavant thrust between ca. 110–93 Ma, 
followed by duplexing in its footwall between 
ca. 93–88 Ma (DeCelles and Coogan, 2006) (Fig. 14). 
The duplexing coincided with the basal décollement 
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climbing upward into a flat within weak Jurassic 
shale and evaporites (Currie, 2002; DeCelles and 
Coogan, 2006). The total shortening accommodated 
by the Pavant thrust and associated duplexing is 
estimated at ~74 km (DeCelles and Coogan, 2006). 
Following this, emplacement of the frontal Pax-
ton and Gunnison thrust systems accommodated 
~30 km of shortening between ca. 88 and ca. 66 Ma, 
primarily through duplexing and construction of a 
frontal triangle zone (Lawton et al., 1993; DeCelles 
et al., 1995).

Contractional deformation in the northern CNTB, 
as recorded by the deposition and folding of the 
NCF at ~39°N between ca. 103 Ma (and possibly as 
early as ca. 114 Ma) and at least ca. 99 Ma, records 
low-magnitude (~12–13 km) hinterland shortening 
during construction of the frontal Sevier thrust belt. 
Shortening in the CNTB overlapped temporally 

with emplacement of the Pavant thrust and asso-
ciated duplex system (Fig. 14). Therefore, the CNTB 
preserves a record of partitioning of shortening 
between frontal and interior positions of the Cor-
dilleran orogenic wedge. Because the CNTB was 
situated far to the west of the frontal, active portion 
of the Sevier thrust belt (~180 km, based on the dis-
tance between the NCF basin and the Pavant duplex 
on the restored cross section of Long, 2019), it is dif-
ficult to interpret this hinterland deformation in the 
context of critical taper dynamics. Instead, below 
we summarize several transitions that were tak-
ing place in the Cordilleran orogenic wedge during 
this time interval, in order to speculate on how the 
CNTB fits into this larger framework.

CNTB deformation immediately postdated a 
transition in structural style in the Sevier thrust belt, 
from emplacement of the thick Canyon Range thrust 

sheet to imbrication and duplexing of multiple thin-
ner, frontal thrust sheets of the Pavant thrust and 
duplex system. This transition has been attributed 
to the thrust belt propagating eastward across the 
Wasatch hingeline, from the thick stratigraphy of 
the passive margin on the west to the thinner, less 
competent cratonic section on the east, eventually 
culminating in the basal décollement exploiting 
weak Jurassic shale and evaporites (e.g., DeCelles et 
al., 1995; Currie, 2002). In addition, CNTB deforma-
tion overlaps with the emplacement of the Pavant 
thrust sheet and associated duplex system between 
ca. 110–88 Ma, which records the fastest long-term 
shortening rates in the Sevier thrust belt at this lat-
itude (DeCelles and Coogan, 2006) (Fig. 14).

A model for cyclical processes within the Cor-
dillera recently put forth by DeCelles and Graham 
(2015) proposes a temporal link between high-flux 
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Figure 14. Chart showing timing and shortening 
rates of structural systems in the Sevier thrust belt 
at approximately the same latitude as our study in 
the Central Nevada thrust belt (CNTB) (calculated 
from DeCelles and Coogan, 2006, their figure 8). 
Timing constraints for Newark Canyon Formation 
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episodes in the magmatic arc and periods of rapid 
shortening and forward propagation in the retroarc 
thrust belt. In this model, high-flux magmatic events 
are interpreted as the result of rapid underthrust-
ing of melt-fertile continental lower crust from the 
retroarc side, which is promoted by the foundering 
of a dense eclogitic root beneath the arc (DeCelles 
et al., 2009; DeCelles and Graham, 2015; Paterson 
and Ducea, 2015). NCF deposition and correspond-
ing CNTB deformation at ~39°N were contemporary 
with a high-flux magmatic episode at ca. 115–80 Ma 
and the onset of renewed eastward propagation of 
the Sevier thrust belt (DeCelles and Graham, 2015, 
their figure 2). When viewed in the context of the 
cyclicity model, we speculate that CNTB deforma-
tion does not necessarily represent out-of-sequence 
deformation for building wedge taper, but instead 
may have represented synchronous partitioning of 
shortening between foreland (emplacement of the 
Pavant thrust and associated duplex system) and 
interior regions of the orogenic wedge (CNTB) in an 
effort to accommodate an overall increase in strain 
rates during renewed underthrusting.

In summary, deformation in the CNTB at our 
studied latitude corresponded temporally with a 
transition in structural style within the Sevier thrust 
belt, the interval of the highest shortening rates 
recorded in the Sevier thrust belt, a high-flux event 
in the magmatic arc, and an associated renewal of 
rapid underthrusting in the retroarc. We suggest 
that these factors worked together to promote 
partitioning of shortening between the frontal and 
interior portions of the orogenic wedge during the 
middle Cretaceous (ca. 115–90 Ma).

■■ CONCLUSIONS

(1)	 In the southern Diamond Mountains, deposi-
tion of the basal member of the NCF began 
no earlier than ca. 114 Ma, middle members 
were being deposited by ca. 106–103 Ma, 
and the youngest member was deposited 
no earlier than ca. 99 Ma.

(2)	Intraformational progressive unconfor-
mities, an angular unconformity between 
two members, and abrupt along- and 

across-strike thickness changes indicate that 
NCF deposition was coeval with growth of 
the east-vergent Strahlenberg anticline, a 
fault-​propagation fold that we correlate with 
proximal CNTB deformation. This is corrobo-
rated by east-directed paleocurrents and clast 
compositions that define unroofing of upper 
Paleozoic sedimentary rocks, which we relate 
to the progressive erosion of a regional-​scale 
CNTB anticline ~10 km to the west.

(3)	CNTB deformation represents middle Cre-
taceous strain partitioning between frontal 
and interior components of the Cordilleran 
retroarc; this partitioning took place during a 
transition in the structural style in the Sevier 
thrust belt and during a time of high-flux 
magmatism and renewed retroarc shortening.
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