
DOI:10.1130/GES01102.S2 
 

Page 1 of 10 

Supplementary material for: Long, S.P., 2015, An upper-crustal fold province in the 
hinterland of the Sevier orogenic belt, eastern Nevada, U.S.A.: a Cordilleran Valley and 
Ridge in the Basin and Range: Geosphere, v. 11, doi:10.1130/GES01102.1. 

 
Section SM1: Stereoplots supporting dip magnitude maps. 
 
Figure SM1: Equal-area, lower-hemisphere projections, generated using Stereonet 8 

(Allmendinger et al., 2011), showing poles-to-planes of bedding for Paleozoic-Mesozoic rocks 
(red dots) and bedding, compaction foliation, and flow foliation for Tertiary rocks (black 
triangles), which were used to calculate the mean attitudes that support the dip magnitude maps 
shown on Figures 3A-C and Figure SM2. Attitudes were measured directly off of source maps, 
which are listed in the name of the stereoplot. The number of analyses and the age range of rocks 
that attitudes were measured on are shown at the bottom of each stereoplot. Average attitudes 
were calculated using the mean vector (m.v.) function, which are shown as strike and dip 
symbols on Figure 3A for Tertiary rocks, and on Figure SM2 for Paleozoic-Mesozoic rocks. Red 
boxes represent the mean vector for Paleozoic-Mesozoic rocks, and black boxes represent the 
mean vector for Tertiary rocks. Ellipses represent the 95% confidence interval corresponding to 
each mean vector. For stereoplots that have both Paleozoic-Mesozoic and Tertiary attitudes 
plotted, Paleozoic-Mesozoic attitudes were rotated to their Paleogene attitude by using the ‘rotate 
data’ function to rotate the mean attitude of Tertiary rocks to horizontal, and rotate Paleozoic-
Mesozoic rocks by the same amount. The un-rotated data are shown on their own stereoplots 
(marked with ‘_rotated’ at the end of their name). The resulting Paleogene mean attitudes for 
Paleozoic-Mesozoic rocks are shown as strike and dip symbols on Plate 1 and Figure 3C. 

 
Figure SM2: Dip magnitude map, covering the same area as Plate 1, showing present 

day attitudes of Paleozoic-Mesozoic rocks (see Plate 1 for structure abbreviations). Colored 
polygons represent areas on source mapping where multiple measurements demonstrate that 
rocks consistently have a similar attitude. Areas with variable attitude or insufficient attitude data 
are not shown. Strike and dip symbols represent the mean attitude of multiple measurements, 
which are plotted on Figure SM1; brown numbers next to strike and dip symbols correspond to 
individual stereoplots in Figure SM1. Figure 3B in the text shows a similar dip magnitude map 
for Paleozoic-Mesozoic rocks, with strike and dip symbols omitted for simplicity. 

 
Section SM2: Zipped ArcGIS files accompanying Plate 1; includes mxd document and 

shapefiles. 
 
Figure SM3: This version of Plate 1 is designed as an interactive PDF that allows 

examination of layers of specific spatial data sets individually. To see the list of available layers, 
click on the ‘layers’ tab in the left-hand table of contents in the PDF viewer. Layers of interest 
can be turned on and off by clicking on the eye symbol to the left of the name of the appropriate 
layer. 

 
Section SM3: Detailed descriptions of ENFB and CNTB structures. 

 
 
1. FIRST-ORDER FOLDS OF THE EASTERN NEVADA FOLD BELT 
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1.1. Pinto Creek syncline 
The axis of a north-trending syncline, which preserves rocks as young as Permian and 

Cretaceous in its hinge zone, can be traced for ~95 km from the northern Pancake Range through 
the full length of the Diamond Mountains (Plate 1). Nolan et al. (1974) referred to the portion of 
this fold in the southern Diamond Mountains as the Pinto Creek syncline, and this name is 
applied here to its full length. In the northern Diamond Mountains, the Pinto Creek syncline has 
an eastern limb that dips 25–40° west and a western limb that steepens progressively toward the 
south, from 25° east to 80° east. At the northern end of the range, retro-deformation of tilts of 
Tertiary rocks indicates original western and eastern limb dips of ~25° southeast and ~50° 
southwest, respectively. In addition to the Pinto Creek syncline, the axes of several 2nd-order 
folds can be traced for distances up to 10–15 km in the northern half of the range. 

In the southern Diamond Mountains, the western limb of the Pinto Creek syncline dips 
between 60° east and 80° west (overturned), and the eastern limb dips ~20° northwest. The axis 
is jogged to the north by offset and differential erosion across a west-dipping normal fault (Nolan 
et al., 1971), and reappears within the Newark Canyon Formation on the western flank of the 
range. From here, the axis can be traced to the southeast corner of the range, where the western 
limb dips 30–50° northeast and the eastern limb dips 20° northwest. Because the Paleogene 
unconformity is untilted in the southern Diamond Mountains (Long et al., 2014), these limb 
orientations approximate the pre-Paleogene fold geometry. In the northern Pancake Range, the 
western limb dips ~15° east and the eastern limb dips ~20° west. At the southern end of its axial 
trace, retro-deformation of Tertiary tilts indicates Paleogene western and eastern limb dips of 
~10° east and ~40° west, respectively. 

The amplitude of the Pinto Creek syncline, as estimated from cross-sections on source 
maps, ranges between 1400 and 3000 m, and the amplitudes of 2nd-order folds in the northern 
Diamond Mountains range between 500 and 1500 m. The pre-extensional wavelength of the 
Pinto Creek syncline, as estimated from the restored map distance between the axes of the 
adjacent Eureka culmination to the west and Illipah anticline to the east (Fig. 6), is 25–35 km. 
The syncline folds the Aptian (~122–116 Ma) Newark Canyon Formation in the southern 
Diamond Mountains (Long et al., 2014), and folds undated rocks mapped as Newark Canyon 
Formation in the northern Diamond Range (Stewart and Carlson, 1978). Long et al. (2014) 
interpreted the portion of the Pinto Creek syncline in the southern Diamond Mountains as the 
frontal axis of a hanging wall ramp above the Ratto Canyon thrust, and therefore as an Aptian 
fold that grew synchronous with Newark Canyon Formation deposition. However, the 
construction mechanism for this fold further north in the Diamond Mountains is unclear, as no 
thrust faults are exposed through a complete section of Silurian through Permian rocks in its 
western limb (Nolan et al., 1971), and the geometry changes to a much tighter fold with steeper 
limbs and multiple subsidiary folds. 
1.2. Illipah anticline 

In the White Pine Range, Humphrey (1960) mapped the north-trending Illipah anticline. 
Compilation of mapping along-trend in the White Pine Range (Moores et al., 1968; Tracy, 
1969; Hose and Blake, 1976; Guerrero, 1983) and to the north along Alligator Ridge and Bald 
Mountain (Nutt, 2000; Nutt and Hart, 2004) shows that this fold can be traced for ~105 km, and 
the name Illipah anticline is here applied along its full length. Along Bald Mountain and 
Alligator Ridge, the axis can be traced discontinuously, with modern western and eastern limb 
dips of ~20°west and ~15–40° east, respectively. In the White Pine Range, the western limb dips 
~20–35° west and the eastern limb dips ~40–45° east. At Paleogene erosion levels, Devonian to 
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Mississippian rocks were exposed in the hinge zone, and rocks ranging from Pennsylvanian to 
Triassic were preserved in the limbs. 

Retro-deformation of tilts of Tertiary rocks indicates original limb dips between ~15–35° 
west for the western limb, and ~15–30° east for the eastern limb. The amplitude, as estimated 
from Paleogene structural relief, was between 1200 and 2050 m in the western limb, and 
between 2300 and 3800 m in the eastern limb. The pre-extensional wavelength, estimated 
between the axes of the adjacent Pinto Creek syncline and Butte synclinorium, is 35–50 km. 
Rocks as young as Lower Triassic are folded in the eastern limb of the Illipah anticline, 
providing a maximum age bound. 

West of the Illipah anticline axis in the White Pine Range, several 2nd-order folds are 
present. The largest of these is the Little Antelope syncline (Humphrey, 1960), which can be 
traced for 50 km, preserves rocks as young as Permian in its hinge zone, and has modern western 
and eastern limb dips between 20 and 65° east and 20–35° west, respectively. Its Paleogene 
amplitude varies between 620 and 1050 m, and its minimum wavelength is 4–7 km. In addition, 
several other 2nd-order folds in the White Pine Range can be traced for map distances of 8–10 
km, with modern wavelengths between 2 and 9 km (Humphrey, 1960; Guerrero, 1983; Tracy, 
1969; Moores et al., 1968), and maximum Paleogene amplitudes between 300 and 600 m. 
1.3. Butte synclinorium 

Hose (1977) documented that rocks as young as Permian and Triassic are preserved in a 
200 km long, north to north-northwest trending map pattern that trends through the Butte 
Mountains, central Egan Range, and southern Schell Creek Range, and designated this the ‘Butte 
structural trough’. Gans and Miller (1983) later referred to this structure as the ‘Butte 
synclinorium’, and show it as a regional syncline. Long (2012) extended the map pattern of the 
Butte synclinorium, and showed that it can be traced for ~250 km on the basis of Paleogene 
subcrop patterns. 

Formation-scale subcrop patterns of an 80 km length of the Butte synclinorium are shown 
on Plate 1. At Paleogene erosion levels, up to 900 m of Triassic rocks are preserved in its hinge 
zone in the Maverick Springs Range and the Butte Mountains, as well as a complete section of 
Permian rocks that is up to 2750 m-thick (Stewart, 1980). In the Butte Mountains, modern 
western and eastern limb dips are 20–30° east and 25–30° west, respectively. In 
addition, Douglass (1960) mapped a series of 2nd-order folds in the southern Butte Mountains, 
which can be traced for map distances of 5–10 km, have limbs with a total dip range between 15 
and 30°, modern wavelengths between 1 and 4 km, and Paleogene amplitudes between 250 and 
700 m. To the south, along Radar Ridge, the master structure of the Butte synclinorium is 
referred to as the Radar Ridge syncline (Brokaw and Barosh, 1968), and has a modern western 
limb dip between 35 and 50° east, and a modern eastern limb dip that varies between 30° west 
and overturned. 

The Paleogene amplitude of the Butte synclinorium was between 2300 and 3800 m, and 
its Paleogene wavelength is 25–45 km. The Butte synclinorium folds rocks as young as Lower 
Triassic, providing a maximum age bound. 
1.4. Cherry Creek anticline 

The subcrop pattern of a north-trending anticline is defined east of the axis of the Butte 
synclinorium on the subcrop map of Long (2012), although it was not formally named or 
described. It is defined by Devonian, Mississippian, and Pennsylvanian erosion levels juxtaposed 
between the Permian to Triassic erosion levels of the adjacent Butte and Pequop synclinoria, 
which can be traced for 110 km on the map of Long (2012), from southern Butte Valley, and 
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through the Cherry Creek and northern Egan ranges. This fold is here named the Cherry Creek 
anticline. 

The southern 30 km of the Cherry Creek anticline axis is present on the northeast edge of 
Plate 1, where the western limb has a modern limb dip of 25–30° west. Retro-deformation of 
Tertiary tilts defines a Paleogene western limb dip of 15–20° west, and data from the subcrop 
map of Gans and Miller (1983) define a Paleogene eastern limb dip of 10–35° east. The 
amplitude of the western limb is 2300–3800 m at its southern extent on Plate 1. To the northeast 
of Plate 1, the total amplitude of the Cherry Creek anticline is between 3100 and 4000 m, and 
decreases to 2700 m at its northern extent. The Paleogene amplitude, estimated between the axes 
of adjacent 1st-order folds, is 15–40 km. Rocks folded in the hinge zone that are mapped as the 
Lower Jurassic Aztec sandstone (Coats, 1987) provide a maximum age bound. 
1.5. Pequop synclinorium 

The Pequop synclinorium was defined on the subcrop map of Long (2012), based on a 
north-trending subcrop pattern of Permian, Triassic, and Jurassic rocks preserved for a distance 
of 115 km, from the northern Schell Creek Range to the southern Pequop Mountains. Paleogene 
limb dips are estimated from retro-deformed attitudes presented in Gans and Miller (1983) for 
the southern ~30 km of the fold in the Schell Creek Range, and vary between 10 and 35° east in 
the western limb, and 25–30° west in the eastern limb. The Paleogene amplitude is 2500–3000 m 
at its southern end, and as high as 3400–4000 m at its northern end. The Paleogene wavelength, 
estimated between the axes of the Cherry Creek anticline and Confusion synclinorium, has to be 
less than 25 km. Rocks as young as Lower Jurassic (Coats, 1987) are folded in the shared limb of 
the Pequop synclinorium and Cherry Creek anticline, which provides a maximum age bound. 
 
2. THRUST FAULTS AND FOLDS OF THE NORTHERN CENTRAL NEVADA 
THRUST BELT 
2.1. Eureka culmination and associated structures 

In the northern Fish Creek Range and southern Diamond Mountains, Paleogene erosion 
levels vary between Cambrian and Permian, indicating a total structural relief of ~6 km. Using 
retro-deformed cross-sections, Long et al. (2014) showed that the pre-extensional deformation 
geometry across the two ranges defines the Eureka culmination, an anticline with a ~20 km 
wavelength, a ~4.5 km amplitude, and limb dips of ~25–35°. A Cambrian over Silurian 
relationship defined in drill holes under the anticline crest (same location as stereoplots 24 and 
25) is interpreted as the east-vergent, blind Ratto Canyon thrust, and the Eureka culmination is 
interpreted as a fault-bend fold constructed by ~9 km of eastward motion of the Ratto Canyon 
thrust sheet over a footwall ramp that cuts upsection toward the east from Cambrian to Silurian 
rocks (Long et al., 2014). Stratigraphic throw on the Ratto Canyon thrust is estimated at 2000–
2500 m where it is drilled, where Middle Cambrian rocks are in its hanging wall, but may be as 
high as 3500 m ~5 km to the north, where rocks as deep as Lower Cambrian are exposed. Long 
et al. (2014) proposed that the type-section of the Early Cretaceous (Aptian, ca. 116–122 
Ma; Druschke et al., 2010) Newark Canyon Formation was deposited in a piggyback basin that 
developed on the eastern limb of the Eureka culmination as it grew. 

After its construction, the Eureka culmination underwent 7–8 km (40%–45%) of 
extension, accommodated by two sets of normal faults that pre-date late Eocene (~37 Ma) 
volcanism (Long et al., 2014). Therefore, the complex subcrop pattern illustrated on Plate 1 is 
the cumulative result of erosional exhumation of the culmination during and after its 
construction, and tectonic exhumation by pre-volcanic normal faults. The earliest extension, 
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which is bracketed as post-Aptian (<116 Ma) and pre-late Eocene (>37 Ma) was accommodated 
by low cutoff-angle normal fault systems, including the down-to-the-east Hoosac fault system in 
the eastern limb (Plate 1). The second episode of extension is bracketed between Late Cretaceous 
(<84–72 Ma) and late Eocene (>37 Ma), and was accommodated by down-to-the-west normal 
faults, including the Pinto Summit and Dugout Tunnel faults (Plate 1). The second episode of 
extension was accompanied by 20–30° of eastward tilting, which steepened the eastern limb 
from an original dip of ~20–40° east to as high as 60–70° east (stereoplots 24, 26–28), and 
shallowed the western limb from an original dip of ~30–40° west to 15–20° west (stereoplots 16, 
18, 20) (Long et al., 2014). 

The Eureka culmination can be traced for a minimum north-south distance of 80 km, 
from Devonian subcrop levels in drill holes in Diamond Valley (Hess et al., 2004) to subcrop 
levels as deep as Ordovician in the northern Pancake Range (Kleinhampl and Ziony, 1985). The 
deep erosion levels in the Pancake Range are spatially associated with the trace of the Moody 
Peak thrust, discussed in section 5.3.3 below. 

Within the eastern limb of the Eureka culmination, the steeply west-dipping Moritz-
Nager thrust (French, 1993) places Devonian rocks over Mississippian rocks (Plate 1) (Long et 
al., 2014). The Moritz-Nager thrust exhibits 1000–1300 m of stratigraphic throw, has an 
estimated 1–2 km of top-to-the-east displacement, and is interpreted as a subsidiary structure that 
post-dates the majority of motion on the Ratto Canyon thrust (Long et al., 2014). 
2.2. Antelope thrust 

In the northern Antelope Range, Hose (1983) mapped a thrust fault that places Cambrian 
rocks over Mississippian rocks, and Carpenter et al. (1993) named this structure the Antelope 
thrust (Plate 1). This thrust ramps upsection toward the east through Mississippian rocks in its 
footwall (Hose, 1983), and is interpreted here as east-vergent. At Paleogene erosion levels, 
Ordovician rocks were exposed at the surface in its hanging wall (Plate 1). Based on differences 
in the stratigraphic section between the Antelope Range and Fish Creek Range, Hose (1983) 
suggested that a thrust fault may be concealed between the two ranges. After this suggestion, the 
trace of the Antelope thrust is approximated between the two ranges (Plate 1), and is shown 
connecting to the south with a Devonian over Pennsylvanian-Permian thrust fault mapped in the 
Park Range by Dixon et al. (1972). Throw on the Antelope thrust is ~2600 m in the northern 
Antelope Range, and decreases to ~900–1400 m in the Park Range. 
2.3. Northern Pancake Range 

The northern Pancake Range suffers from a dearth of detailed bedrock mapping, and 
different naming schemes for folds and thrust faults have been previously proposed (Nolan et al., 
1974; Carpenter et al., 1993; Ransom and Hansen, 1993; Long, 2012). Here, a new naming and 
correlation scheme is proposed, based on primary map sources (Nolan et al., 1974; McDonald, 
1989), with additions from Carpenter et al. (1993). 

1. Moody Peak thrust. In the northwest corner of the range, Kleinhampl and Ziony (1985) 
mapped Cambrian and Ordovician rocks in thrust contact over Devonian rocks, and Carpenter et 
al. (1993) described this structure as the east-vergent Moody Peak thrust. Based on interpolation 
of subcrop data (Plate 1), the Moody Peak thrust is shown with a footwall flat in the Devonian 
Nevada Formation, and ramping upsection toward the east in its hanging wall from Silurian to 
Ordovician rocks. Stratigraphic throw across the Moody Peak thrust is estimated between 700 
and 1750 m. Carpenter et al. (1993) stated that the Moody Peak thrust cuts undated rocks 
mapped as the Newark Canyon Formation. However, given the difficulties in correlating rocks 
without precise age control that are mapped as Newark Canyon Formation (e.g., see discussion 
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in the main body of this manuscript and in Long et al. [2014]), the Early Cretaceous maximum 
motion age constraint that this field relationship implies is considered tentative. 

Based on their spatial relationships to deep erosion levels associated with the Eureka 
culmination, and the relative stratigraphic levels that they deform, the Moody Peak and Ratto 
Canyon thrust faults are correlated here. The southward decrease in throw between these two 
structures is consistent with their relative hanging wall and footwall stratigraphic levels. Under 
this correlation, the combined Ratto Canyon-Moody Peak thrust can be traced for a minimum 
north-south distance of 40 km. 

2. Pancake thrust system. In the northwest Pancake Range, Nolan et al. (1974) mapped 
two thrust faults, one west-dipping and one east-dipping, that place Devonian rocks over 
Mississippian rocks. Carpenter et al. (1993) interpreted both of these structures as a single, 
folded, east-vergent thrust fault named the Pancake thrust. These two thrust traces connect to the 
south with the east-vergent Red Ridge-Lost Hills thrust system described by McDonald (1989). 
In this study, the Pancake thrust and Red Ridge-Lost Hills thrust system are correlated, and 
referred to as the Pancake thrust system. The Pancake thrust system can be traced for a north-
south distance of ~35 km, and stratigraphic throw on individual structures varies between 300 
and 1300 m. Structures of the Pancake thrust system cut rocks as young as Mississippian, and are 
truncated by an Aptian (108 ± 3 Ma; K-Ar biotite; Nolan et al., 1974) dacite stock (McDonald, 
1989). 

3. Green Springs thrust. McDonald (1989) mapped the northeast-striking, east-vergent 
Green Springs thrust, which is interpreted to be structurally higher than the Pancake thrust 
system. At Paleogene erosion levels, the thrust places Devonian and Lower Mississippian rocks 
over Upper Mississippian rocks, corresponding to a range in stratigraphic throw between 600 and 
1500 m. Undated conglomerate mapped as the Newark Canyon Formation overlaps the Green 
Springs thrust (McDonald, 1989); however, similar to the discussion above for the Moody Peak 
thrust, without precise age control on these rocks, this age constraint should be considered 
tentative. 

4. Duckwater thrust. The east-vergent Duckwater thrust was first described by Carpenter 
et al. (1993), and places Devonian and Lower Mississippian rocks over Upper Mississippian, 
Pennsylvanian, and Permian rocks (Plate 1), corresponding to a range in throw between ~1500–
2100 m. The Duckwater thrust can be traced for a minimum of ~30 km north to south, and is 
speculatively traced an additional 10 km to the north into Newark Valley on basis of subcrop 
patterns (Plate 1). The Duckwater thrust cuts rocks as young as Lower Permian. 
2.4. Central Pancake Range and Railroad Valley 

Extensive cover under Tertiary volcanic rocks makes construction of an accurate subcrop 
map for much of the central Pancake Range difficult. However, Paleogene subcrop patterns in 
Railroad Valley are aided by extensive drill hole data from petroleum exploration (French, 
1998; Hess et al., 2004). In most areas, subcrop patterns were interpreted as representing 
erosionally beveled folds, because of a lack of evidence for older over younger structural 
relationships in drill hole data in Railroad Valley (e.g., French, 1998). 

1. Portuguese Mountain thrust. A northeast-striking, east-vergent thrust fault was 
mapped by Quinlivan et al. (1974), and is here named the Portuguese Mountain thrust. At 
Paleogene erosion levels, it places Devonian and Lower Mississippian rocks over Upper 
Mississippian rocks, corresponding to a range in throw between 250 and 1350 m. 

2. McClure Spring syncline. The north-northwest trending McClure Spring syncline was 
described west of the town of Duckwater by Perry and Dixon (1993), where it contains 
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Pennsylvanian, Permian, and Cretaceous rocks in its hinge zone. Here, the fold has a vertical to 
overturned western limb, an eastern limb that dips up to 50°W, and is interpreted as east-vergent 
(Perry and Dixon, 1993). Kleinhampl and Ziony (1985) mapped the Cretaceous Newark Canyon 
Formation in its hinge zone; these rocks are mapped as Cretaceous because they have yielded 
dinosaur bones, but they cannot be more precisely dated. Perry and Dixon (1993) argued that 
Permian rocks are the youngest involved in folding, and while Cretaceous rocks are present, they 
are not involved in folding, and overlap folded Pennsylvanian rocks across a ~90° angular 
unconformity. The syncline can be traced ~30 km to the south through Railroad Valley, where 
Mississippian rocks occupy the hinge zone, and the eastern and western limbs are defined by 
erosion levels that descend downsection to Devonian rocks. Rocks in the western limb presently 
dip ~25–40° east, and restore to Paleogene dips of ~10–15° northeast. The amplitude of the fold 
varies from 1100 to 1400 m at its northern and southern ends, to a maximum of 2100–2600 m 
where Permian rocks are preserved in its hinge zone. 

3. Trap Spring anticline. A north-trending anticline can be traced for ~70 km on the basis 
of an elongate subcrop pattern of Devonian rocks in Railroad Valley and the central Pancake 
Range, which climbs upsection to the west and east to units as young as Mississippian, 
Pennsylvanian, and Permian. This fold was originally defined on a subcrop map of Railroad 
Valley by French (1998), and is here named the Trap Spring anticline because of its proximity to 
the Trap Spring oil field. The amplitude ranges between 600 and 1300 m in Railroad Valley, to a 
maximum of 2600 m where Permian rocks are preserved in its western limb. 

4. Bacon Flat syncline. A north to north-northwest trending syncline can be traced for 
~70 km along the eastern side of Railroad Valley and through the Duckwater Hills, on the basis 
of an elongate subcrop pattern preserving rocks as young as Pennsylvanian, which descends to 
Devonian levels in the western limb and Devonian to Mississippian levels in the eastern limb. 
This syncline was originally defined on a subcrop map of Railroad Valley by French (1998), and 
is referred to here as the Bacon Flat syncline, after its proximity to the Bacon Flat oil field. The 
amplitude varies between 600 and 1500 m. 
2.5. Quinn Canyon Range and southern Grant Range 

Three east-vergent CNTB thrust faults are mapped in the Quinn Canyon Range and 
southern Grant Range (listed here from structurally-highest to lowest): 

1. Sawmill thrust: The north-northeast striking Sawmill thrust places Ordovician rocks 
over Devonian rocks at Paleogene erosion levels (Bartley and Gleason, 1990), corresponding to a 
range in throw between 1250 and 3050 m. The Sawmill thrust can be traced for ~20 km, and cuts 
rocks as young as upper Devonian. 

2. Rimrock thrust: The Rimrock thrust (Bartley and Gleason, 1990) is the northernmost 
segment of the Rimrock-Lincoln-Freiberg thrust system (Fig. 5), which is one of two through-
going CNTB thrust systems that connect southward with structures of the Sevier thrust belt 
(Taylor et al., 2000; Long, 2012); the other is the Golden Gate-Mount Irish-Pahranagat thrust 
system (Fig. 5), which tips out 10 km south of Plate 1 (Armstrong and Bartley, 1993). At 
Paleogene erosion levels, the Rimrock thrust places Lower Devonian rocks over Upper Devonian 
rocks (Ekren et al., 2012), corresponding to a throw between 650 and 1200 m (Bartley and 
Gleason, 1990). 30–40 km south of Plate 1, structures associated with the correlative Lincoln 
thrust cut rocks as young as Pennsylvanian, and are cross-cut by a Late Cretaceous (ca. 90–98 
Ma; K-Ar biotite) granite pluton (Taylor et al., 2000). 

3. Schofield Canyon thrust and Timber Mountain anticline: In the southern Grant Range, 
the Schofield Canyon thrust places Cambrian rocks over Ordovician rocks, with an estimated 
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stratigraphic throw of 2700 m (Fryxell, 1988; 1991). Based on available subcrop data, the 
Schofield Canyon thrust was not erosionally-breached by the Paleogene (Plate 1). The Timber 
Mountain anticline, a recumbent hanging wall fold, is interpreted to be genetically related to 
motion on the Schofield Canyon thrust (Fryxell, 1988). The axis of the anticline is cross-cut by 
the Late Cretaceous (86.4 ± 4.6 Ma; U-Pb zircon) Troy granite stock (Taylor et al., 2000). 
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B. Paleogene subcrop map of east-central Nevada
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Footnotes for correlation chart:
1. Megabreccia units Klnc, Klcr, Kle, and Kln from Nolan et al. (1971) are mapped as KTmbr in the southern Diamond Mountains.  In the Roberts Mountains, slide blocks of
     Ddg lying over Ov are mapped as KTmbr (McKee and Conrad, 1998).  
2. Permian Unit G (Pgl, Pgu) from Larson and Riva (1963) mapped as Knc, after Stewart (1980), Stewart and Carlson (1978), and Haworth (1979).
3. Includes the Kaibab limestone, Gerster Formation (Douglass, 1960), and Plympton Formation (Connell, 1985), after Hose and Blake (1976). 
4. Includes the Loray and Pequop formations (Connell, 1984), after Hose and Blake (1976). 
5. Lies unconformably on either Mississippian rocks or Ordovician Vinini Formation (McKee and Conrad, 1998; Carlisle and Nelson, 1990)  
6. Units Pa through Pf of Larson and Riva (1963) are mapped as Pcr after Hose and Blake (1976) and Roberts et al. (1967).  
7. Includes Reipe Spring Limestone in Egan Range (Brokaw and Heidrick, 1966) and Pancake Range (Kleinhampl and Ziony, 1985).  
8. Interpreted in drill holes in Railroad Valley, White River Valley, Long Valley, and White Pine Range (Hess et al., 2004).
9. Pennsylvanian Moleen Limestone and Tomera Formation of Campbell (1981) and Tomastik (1981) are mapped as IPe here.
10. Mdp is typically only divided out in source maps in the northwest quarter of the map area.
11. Includes unit Ms locally divided out by Kleinhampl and Ziony (1985), and unit Msw (Scotty Wash sandstone) of duBray and Hurtubise (1994).
12. Only in the southwest part of the map area.  Ekren et al. (1973A) maps Me above Dn; Ddg was either not deposited here, or was eroded prior to Me deposition.
13. Units Mar and Marc of Hose (1983) are mapped as Mdc here, after stratigraphic divisions of Nolan et al. (1974).  Mdc is local to Fish Creek and Diamond ranges.  Also, in
       the Mahogany Hills, unit ‘u’ of Schalla (1978) (undi�erentiated post-Devonian sandstone, shale, and conglomerate) is mapped here as Mdc, after Long et al. (2012).
14. Lower Mississippian Webb Formation (Mw) of Hose (1983) is mapped here as Joana Limestone.
15. Only mapped in Fish Creek Range; allochthonous Dw of Hose (1983) is interpreted as upper plate of Roberts Mountains allochthon, after Stewart and Carlson (1978).
16. Named Devil’s Gate Limestone within and west of the Diamond Mountains, and Guilmette Formation to east and south; these two units are laterally-equivalent.
17. Includes Bay State Dolomite, Woodpecker Limestone, and Sentinel Mountain Dolomite members in the Diamond Mountains (Nolan et al., 1974), and Simonson
      Dolomite member elsewhere.
18. Includes Oxyoke Canyon Sandstone and Beacon Peak Dolomite members in Diamond Mountains (Nolan et al., 1974), and Oxyoke Canyon Sandstone member, Sadler
      Ranch Fm., McColley Canyon Fm., and Beacon Peak Dolomite member in Fish Creek Range (Hose, 1983; Cowell, 1986; Long et al., 2012).  Consists of Sevy Dolomite in
      the majority of the map area, including Quinn Canyon Range and Railroad Valley (Ekren et al., 2012; Hess et al., 2004).
19. Includes the laterally-equivalent Laketown Dolomite mapped by Kleinhampl and Ziony (1985) and Ekren et al. (2012).
20. Includes Ely Springs Dolomite in Pancake  and Quinn Canyon ranges (Kleinhampl and Ziony, 1985; Ekren et al., 2012); laterally-equivalent to Hanson Creek Dolomite.
21. Includes the Antelope Valley, Ninemile, and Goodwin Formations in the Fish Creek and Antelope Ranges (Hose, 1983; Long et al., 2012).  Also includes the Copenhagen
      Formation of Hose (1983) in the southern Antelope Range.
22. Both Cdw and Chs are only exposed in the Fish Creek Range (Nolan et al., 1974; Long et al., 2012).

Abbreviations used in correlation chart:
   undi�. = undi�erentiated; Fm. = Formation; Sh. = shale; Ls. = limestone

1

2

8

3

4

75 6

Lower
Ely Limestone9

Mississippian

Diamond Peak
Formation

Upper

Chainman
Shale

10

11
Diamond Pk. Fm.

and Chainman
Shale, undi�.

Lower 13Dale Canyon Fm.

Upper
Joana Limestone and

Pilot Shale, undi�.
Diamond Peak Fm.,

Chainman Sh., Joana Ls.,
and Pilot Sh., undi�.

Chainman Sh.,
Joana Ls., and
Pilot Sh. undi�.

Eleana Fm.

Devonian

12

14

Middle

Devil’s Gate limestone
and Guilmette Fm.

Woodru� Fm.15

16

Upper Nevada Fm.

Lower Nevada Fm.Lower Nevada Fm., undi�.

17

18

Silurian
Lone Mountain Dolomite19

Ordovician
Eureka Quartzite and

Hanson Creek Formation

Upper

Middle

Lower

Vinini Fm.
20

Pogonip Group,
undi�.21

Cambrian
Windfall Formation and

Dunderberg Shale, undi�. 22

22

Upper

Middle Hamburg dolomite and
Secret Canyon Shale, undi�.

Pa
le

oz
oi

c

Oligocene sub-volcanic
unconformity

basal Sheep Pass
Fm. unconformity

late Eocene

allochthonous
rocks in hanging
wall of Roberts

Mountains thrust:

Ki

Ji

Dw

Ov

Ddg

Dnu

Dnl
Dn

Slm

Oe

Op

Cdw

Chs

IPPu
PrhPcrPgv

IPe

Mdp

Mc

Mcd

Mdc

MDpj

MDpjcd

MDpjc
Me

KTmbr

Knc

TRmt

Pu

Ppc

Pa

Par

A. Correlation of map units Ruby M
ountains

H
untington Valley

Ta
bl

e 
M

tn
.

Pi
ne

 V
al

le
y

G
ar

de
n 

Va
lle

y

Ro
be

rt
s 

M
ts

.

Su
lp

hu
r S

pr
in

gs
 R

an
ge

D
ia

m
on

d 
Va

lle
y

Kobeh Valley

W
histler M

tn.

Lo
ne

 M
tn

.

M
tn. Boy Range

M
ah

og
an

y 
H

ill
s

A
nt

el
op

e 
Va

lle
y

Fi
sh

 C
re

ek
 R

an
ge

Eureka
D

iam
ond M

ts.

Li
tt

le
 S

m
ok

y 
Va

lle
y

Pa
nc

ak
e 

R.

N
ew

ark Valley

D
iam

ond M
ts.

Ruby Valley

Bald M
ountain

Maveric
k Spr. R

.

Bu
tt

e 
M

ou
nt

ai
ns

Bu
tt

e 
Va

lle
y

Ch
er

ry
 C

re
ek

 R
an

ge

Lo
ng

 V
al

le
y

Bu
ck

 M
ou

nt
ai

n

N
ew

ark Valley

Strawberry

Egan Range

Radar RidgeJake’s Valley

W
hite Pine Range

Hamilton

W
hite Pine Range Preston

Lund

Currant

Eg
an

 R
an

ge

W
hi

te
 R

iv
er

 V
al

le
y

Sunnyside

Eg
an

 R
an

ge

Seam
an Range

Coal Valley

G
ol

de
n 

G
at

e 
Ra

ng
e

G
ar

de
n 

Va
lle

y
G

ra
nt

 R
an

ge

Qui
nn

 C
an

yo
n 

Ra
ng

e

Ra
ilr

oa
d 

Va
lle

y

Re
ve

ill
e 

Ra
ng

e

Pa
nc

ak
e 

Ra
ng

e

Lockes

H
ot

 C
re

ek
 V

al
le

y

Ra
ilr

oa
d 

Va
lle

y

Bi
g 

Sa
nd

 Sp
rin

gs
 Va

lle
y

H
ot

 C
re

ek
 R

an
ge

Pa
rk

 R
an

ge

Ra
ilr

oa
d 

Va
lle

y

Duckwater

D
uc

kw
at

er
 H

ill
sPancake Range

Little Sm
oky Valley

A
nt

el
op

e 
R.


	1102_SuppWordDoc
	Supplementary material for: Long, S.P., 2015, An upper-crustal fold province in the hinterland of the Sevier orogenic belt, eastern Nevada, U.S.A.: a Cordilleran Valley and Ridge in the Basin and Range: Geosphere, v. 11, doi:10.1130/GES01102.1.
	1. FIRST-ORDER FOLDS OF THE EASTERN NEVADA FOLD BELT
	1.1. Pinto Creek syncline
	1.2. Illipah anticline
	1.3. Butte synclinorium
	1.4. Cherry Creek anticline
	1.5. Pequop synclinorium

	2. THRUST FAULTS AND FOLDS OF THE NORTHERN CENTRAL NEVADA THRUST BELT
	2.1. Eureka culmination and associated structures
	2.2. Antelope thrust
	2.3. Northern Pancake Range
	2.4. Central Pancake Range and Railroad Valley
	2.5. Quinn Canyon Range and southern Grant Range

	REFERENCES CITED

	Fig_SM1
	Fig_SM1_stereonet_plots_1
	Fig_SM1_stereonet_plots_2
	Fig_SM1_stereonet_plots_3
	Fig_SM1_stereonet_plots_4
	Fig_SM1_stereonet_plots_5
	Fig_SM1_stereonet_plots_6
	Fig_SM1_stereonet_plots_7
	Fig_SM1_stereonet_plots_8
	Fig_SM1_stereonet_plots_9
	Fig_SM1_stereonet_plots_10
	Fig_SM1_stereonet_plots_11
	Fig_SM1_stereonet_plots_12
	Fig_SM1_stereonet_plots_13
	Fig_SM1_stereonet_plots_14
	Fig_SM1_stereonet_plots_15
	Fig_SM1_stereonet_plots_16

	Fig_SM2
	Fig_SM3

