- 1 Long, S.P., Gordon, S.M., and Soignard, E., 2017, Distributed north-vergent shear and - 2 flattening through Greater and Tethyan Himalayan rocks: Insights from metamorphic and - 3 strain data from the Dang Chu region, central Bhutan: Lithosphere, - 4 https://doi.org/10.1130/L655.1. - 8 Table S1 (following two pages): Details on Dang Chu transect thin sections, listed from - 9 structurally-low to high. Cells highlighted in gray represent paired thin sections from the same - sample used for strain analyses. | | GBAR | ms,qz,pt | /1, 1/4 | parallel to crenulation | 5, 085 | | 19, 000 | pnyllite | Desnichilling | 3000 | 90.18669 | 27.59558 | BU13-124B | 1248 | |-------------------------------------|------------------------|------------------------------------|----------------------|-------------------------|----------------------------|-----------------------|----------------------|---------------------|---------------|----------------|-----------|------------|------------------------|--------------| | | GBAR | ms,qz,bt | 88, 267 | normal to crenulation | 5, 085 | | 19, 000 | phyllite | Deshichilling | 3000 | 90.18669 | 27.59558 | BU13-124A | 124A | | top-to-N SC fabric | not recrystallized | qz,bt,gr,cal | 73, 073 | normal to crenulation | 13, 252 | i | 26, 315 | phyllitic quartzite | Deshichilling | 2740 | 90.18742 | 27.58814 | BU14-79A | 79A | | · | not recrystallized | ms,bt,qz,hem | 65, 231 | normal to lineation | | 25, 052 | 82, 325 | phyllite | Deshichilling | 2420 | 90.19064 | 27.58058 | BU13-123BB | 123BB | | t | not recrystallized | ms,bt,qz,hem | 19, 343 | parallel to lineation | • | 25, 052 | 82, 325 | phyllite | Deshichilling | 2420 | 90.19064 | 27.58058 | BU13-123BA | 123BA | | T. | not recrystallized | bt,ms,hem,qz | 41, 010 | parallel to lineation | | 33, 057 | 71, 350 | phyllitic quartzite | Deshichilling | 2420 | 90.19064 | 27.58058 | BU13-123A | 123A | | ř | not recrystallized | cal,qz | 86, 266 | normal to crenulation | 3, 087 | ı | 47, 000 | marble | Chekha | 1960 | 90.18369 | 27.57706 | BU14-80A | 80A | | i i | not recrystallized | qz,ms,hem,bt | 59, 264 | normal to crenulation | 31, 085 | ı | 48, 025 | slate | Chekha | 1630 | 90.17947 | 27.56861 | BU13-122 | 122 | | | SGR | cal oz | not oriented | random | c | | | marble | Chekha | 1490 | 90.17144 | 27.54450 | BU14-81 | 81 | | top-to-N SC fabric | not recrystallized | az.cal.bt.ms | 88. 263 | parallel to lineation | | 10, 352 | 12, 004 | phyllitic quartzite | Chekha | 1450 | 90.16672 | 27.53983 | BU13-120B | 120B | | i i | SGR
SGR | qz,cal,ms | 87, 081 | parallel to lineation | 5 5 | 11, 352 | 10, 340 | quartzite | Chekha | 1450 | 90.16672 | 27.53983 | BU13-120AA | 120AA | | ř. | SGR | qz,ms,bt | 85, 088 | normal to crenulation | 16, 000 | | 16, 345 | phyllitic quartzite | Chekha | 1340 | 90.15417 | 27.54264 | BU13-119 | 119 | | | not recrystallized | qz,ms,bt | 67, 103 | parallel to lineation | r | 54, 049 | 64, 000 | phyllitic quartzite | Chekha | 1270 | 90.08442 | 27.50733 | BU13-113E | 113E | | Ä | not recrystallized | kfs,pl,qz,ms | not oriented | random | • | · | | granite | Chekha | 1270 | 90.08442 | 27.50733 | BU13-113D | 113D | | ï | SGR | qz,ms,bt,grt | not oriented | parallel to lineation | 1 | Ē | i | phyllitic quartzite | Chekha | 1270 | 90.08442 | 27.50733 | BU13-113C | 113C | | ř | SGR | qz,ms,bt,grt | not oriented | parallel to lineation | | ı | r | phyllite | Chekha | 1270 | 90.08442 | 27.50733 | BU13-113B | 113B | | | not recrystallized | dz,ms,grt,bt | 83, 046 | normal to lineation | 44, 315 | 4, 226
4, 226 | 44, 310 | phyllite | Chekha | 1270 | 90.08442 | 27.50733 | BU13-113AB | 113AB | | | SGR | qz,kfs | not oriented | random | 24.24. | | 1 | granite | Chekha | 1240 | 90.13567 | 27.54/4/ | BU13-118C | 1180 | | | not recrystallized | qz,cal | 85, 159 | normal to lineation | ٠ | 14, 340 | 21, 070 | quartzite | Chekha | 1240 | 90.13567 | 27.54747 | BU13-118BB | 118BB | | ı | not recrystallized | qz,cal | 79, 250 | parallel to lineation | £ | 06, 338 | 12, 044 | quartzite | Chekha | 1240 | 90.13567 | 27.54747 | BU13-118BA | 118BA | | top-N rotated bt porphyroblasts | not recrystallized | qz,ms,bt | 69, 250 | parallel to lineation | | 14, 340 | 21, 070 | phyllitic quartzite | Chekha | 1240 | 90.13567 | 27.54747 | BU13-118A | 118A | | r | not recrystallized | cal,qz | 90, 000 | east-west | | | horizontal | marble | Chekha | 1210 | 90.17622 | 27.56708 | BU13-121B | 121B | | 0. | not recrystallized | cal.gz | 90, 270 | north-south | | | horizontal | marble | Chekha | 1210 | 90.17622 | 27.56708 | BU13-121A | 121A | | ř. | GRM | gz ms ht chl | 56 275 | parallel to lineation | | 20 350 | 42 055 | quartrite | Chekha | 910 | 90 12442 | 27 54492 | BI 113-117 | 117 | | i n | SGR | qz,ms,bt,grt | 75, 232
75, 232 | parallel to lineation | () | 27,000 | 26, 350 | phyllite | Chekha | 910 | 90.07872 | 27.50450 | BU13-128A | 128A | | T | SGR | qz,grt,bt,ms | 85, 321 | normal to lineation | × | 2, 142 | 21, 060 | phyllite | Chekha | 790 | 90.07014 | 27.49969 | BU13-129B | 129B | | | SGR | qz,grt,bt,ms | 69, 230 | parallel to lineation | | 2, 142 | 21, 060 | phyllite | Chekha | 790 | 90.07014 | 27.49969 | BU13-129A | 129A | | | SGR | qz,ms,bt,grt | 90, 000 | normal to lineation | 41, 270 | 0, 000 | 29, 270 | phyllite | Chekha | 720 | 90.09447 | 27.51236 | BU13-114B | 114B | | top-N asymmetric folds, rotated grt | SGR | qz,ms,bt,grt | 61, 090 | parallel to lineation | 41, 270 | 0,000 | 29, 270 | phyllite | Chekha | 720 | 90.09447 | 27.51236 | BU13-114A | 114A | | | GBM | pl,qz,kfs,ms,bt,tur | not oriented | random | ř. | , , , , , | - 000 | pegmatite | Chekha | 710 | 90.06475 | 27.50311 | BU13-130C | 130C | | top-S C'-type shear bands | GBM | az ms.bt.ørt.pl.sil | 56. 266 | parallel to lineation | 8 9 | 32 330 | 51,030 | phyllite | Chekha | 710 | 90.06475 | 27.50311 | BU13-130B | 130B | | 6 3 | GBM | dr'wis'bi'rai | 72 238 | parallel to lineation | 6 3 | 0 1/18 | 16 058 | Guartzita | Chekha | 710 | 90.06475 | 27 50311 | BI 113-130A | 1304 | | top-N SC Tabric | GRM | qz,ms,tur | not priented | random random | | 47, 332 | 48, 323 | quartzite | Chekha | 0770 | 90.11036 | 27.54264 | B1113-115 | 115 | | top-N SC fabric | SGR | qz,bt,ms | 70, 055 | parallel to lineation | | 26, 335 | 33, 290 | quartzite | Chekha | 160 | 90.11036 | 27.54264 | BU13-116A | 116A | | | GBM | qz,ms,bt,grt,sil | 84, 170 | normal to lineation | | 4, 348 | 10, 045 | schist | Chekha | 70 | 90.05850 | 27.49942 | BU13-131BB | 131BB | | top-S SC fabric | GBM | qz,ms,bt,grt,sil | 82, 269 | parallel to lineation | ź | 4, 348 | 10, 045 | schist | Chekha | 70 | 90.05850 | 27.49942 | BU13-131BA | 131BA | | ī | GBM | kfs,qz,ms,pl | not oriented | random | e | | , | leucosome | Chekha | 70 | 90.05850 | 27.49942 | BU13-131A | 131A | | • | GBM | qz,kfs,tur,ms,bt | 80, 271 | parallel to lineation | | 8, 359 | 14, 046 | leucosome | GHlmu | -90 | 90.05614 | 27.49772 | BU13-112 | 112 | | x x | CBE | qz,pl,bt,ms,kfs
kfs,qz,bt,pl,ms | not oriented | parallel to lineation | | 07, 120 | 07, 115 | paragneiss | GHlmu | -1100
-1100 | 90.03136 | 27.49856 | BU13-111A
BU13-111B | 111A
111B | | i | CBE | pl,qz,kfs,bt,ms | not oriented | random | 1 | | | granite | GHlmu | -1550 | 90.01958 | 27.50217 | BU13-110 | 110 | | ĩ | GBM | kfs,qz,pl,bt | not oriented | parallel to lineation | | i | 1 | leucosome | GHIo | -2150 | 90.00622 | 27.50333 | BU13-109 | 109 | | ÷. | CBE | qz,pl,ms,sil | 88, 244 | parallel to lineation | | 30, 306 | 34, 335 | leucosome | GHIo | -2760 | 89.98214 | 27.50481 | BU13-108 | 108 | | | CBE | qz,ms,bt,pl | not oriented | parallel to lineation | | -, | | orthogneiss | GHlo | -3050 | 89.96292 | 27.50575 | BU13-107B | 107B | | ű | | gz.pl.grt.sil | 71. 242 | parallel to lineation | | 8. 330 | 21.040 | orthogneiss | GHIo | -3050 | 89.96292 | 27.50575 | BU13-107A | 107A | | 2 1 | | qz,kfs,ms,sil | not oriented | random | 3 3 | | | granite | GHImi | -4300 | 89.93103 | 27.49036 | BU13-105 | 105 | | . 1 | GE C | qtz,sil,gt | 87, 265 | parallel to lineation | | 25, 354 | 25, 358 | quartz vein | GHIM
HIM | -4460
-4460 | 89.92844 | 27.49025 | BU13-104A | 104A | | 3 | CBE | qz,ms,grt,bt,sil | not oriented | parallel to lineation | , | | | paragneiss | GHImi | -5260 | 89.90569 | 27.48494 | BU13-103B | 103B | | ÿ | CBE | qz,ms,bt,grt | 84, 264 | parallel to lineation | 2 | 20, 096 | 19, 140 | quartzite | GHlml | -5260 | 89.90569 | 27.48494 | BU13-103A | 103A | | ï | CBE | qz,pl,bt,kfs | not oriented | random | | Ä | 1 | granite | GHlml | -5620 | | 27.48667 | BU13-78 | 78 | | indicators | mechanism ⁴ | phases ³ | (d, dd) ¹ | lineation | axis (tr, pl) ² | (tr, pl) ² | (d, dd) ¹ | lithology | map unit | base Pzc (m) | _ | (dd.ddddd) | number | in text | | kinematic | recrystallization | mineral | orientation | relative to | cleavage | lineation | foliation | | | relative to | longitude | latitude | thin section | number | | | guarty | major | thin section | orientation | crenulation | | | | | height | | | original | section | | | | | | | | | | | | | | | | Alain | | | | reduction | boundary area r | AGR = subgrain rotation, GBM = grain boundary migration without chessboard extinction, CBE = grain boundary migration with chessboard extinction, GBAR = grain boundary area reduction | rith chessboar | migration w | n boundary | xtinction, CBE = grai | out chessboard e | gration with | n boundary mi |), GBM = grai | bgrain rotation | SGR = SL | |--|-------------------------------|--|-----------------|--|----------------|--------------|-------------
---|--------------------|---------------|----------------|----------------|------------------|------------| | | | | | s (2010). | ney and Evan | s after Whit | bbreviation | (d, dd) stands for dip, dip direction notation. 2(tr, pl) stands for trend, plunge notation. 3Mineral abbreviations after Whitney and Evans (2010). | or trend, plunge r | pl) stands fo | otation. 2(tr, | ip direction r | tands for dip, o | 1(d, dd) s | | 4 | GBAR | gr,ms,bt,qz,cal | not oriented | normal to crenulation | | | | phyllite | Maneting | 5250 | 90.19719 | 27.65047 | BU14-76 | 76 | | | GBAR | gr,ms,qz,bt | not oriented | parallel to lineation | · | | | phyllite | Maneting | 5080 | 90.19569 | 27.65972 | BU14-75 | 75 | | • | ,ms,qz,hem not recrystallized | gr,bt,ms,qz,hem | 65, 237 | normal to crenulation | 14, 154 | | 28, 090 | phyllite | Maneting | 4930 | 90.20075 | 27.64314 | BU14-74B | 74B | | gr,bt,ms,qz,hem not recrystallized top-to-N rotated hem porphyroblasts | not recrystallized | gr,bt,ms,qz,hem | 75, 332 | parallel to crenulation | 14, 154 | | 28, 090 | phyllite | Maneting | 4930 | 90.20075 | 27.64314 | BU14-74A | 74A | | | not recrystallized | cal,qz,ms | not oriented | random | | | ÷ | marble | Deshichilling | 4830 | 90.19883 | 27.63939 | BU14-73 | 73 | | · | not recrystallized | pl,qz,bt,tur | not oriented | random | ¢ | c | c | granite | Deshichilling | 4700 | 90.19764 | 27.62661 | BU13-126B | 126B | | top-to-N leucogranite σ-object | not recrystallized | qz,ms,bt,grt,pl,tur not recrystallized | 65, 268 | parallel to lineation | e | 11, 353 | 28, 060 | phyllitic quartzite | Deshichilling | 4700 | 90.19764 | 27.62661 | BU13-126A | 126A | | | GBAR | qz,grt,bt,ms,tur | 27, 073 | parallel to lineation | | 9, 143 | 66, 230 | quartzite | Deshichilling | 4460 | 90.19564 | 27.61986 | BU14-77A | 77A | |) <u>20</u>) | GBAR | qz,ms,bt | 84, 320 | parallel to lineation | 6 | 15, 049 | 16, 070 | quartzite | Deshichilling | 3980 | 90.91830 | 27.61111 | BU13-125B | 125B | | Î. | GBAR | ms,qz,bt | 89, 188 | parallel to crenulation | 4, 100 | | 16, 094 | phyllite | Deshichilling | 3980 | 90.19183 | 27.61111 | BU13-125AB | 125AB | | top-S SC fabric, asymmetric boudinage | GBAR t | ms,qz,bt | 74, 280 | normal to crenulation | 16, 100 | | 16, 094 | phyllite | Deshichilling | 3980 | 90.19183 | 27.61111 | BU13-125AA | 125AA | | | not recrystallized | ms,qz,bt | 90, 070 | normal to crenulation | 0, 250 | 120 | 39, 340 | phyllitic quartzite | Deshichilling | 3680 | 90.18894 | 27.60594 | BU14-78A | 78A | | | | | | | | | | | | | | | | | ## **Discussion S1:** Methodology and supporting data for RSCM thermometry 14 13 Measurements were made at the LeRoy Eyring Center for Solid State Science at Arizona 15 State University, using a Raman spectrometer custom-built by E. Soignard. Carbonaceous 16 material (CM) was analyzed *in situ* on polished, foliation-normal, lineation-parallel thin sections. 17 The 532 nm laser was focused using a 50x ultra-long working distance Mitutoyo objective and 18 19 attenuated to a power of 3 mW at the sample. The probed area of CM for each measurement was approximately 1 µm in diameter (see Fig. 8 in the text). Instrument parameters, settings, and 20 procedures followed those outlined in Cooper et al. (2013), Long and Soignard (2016), and Long 21 22 et al. (2016). The laser was focused on CM situated beneath a transparent grain (typically quartz or calcite), after procedures outlined in Beyssac et al. (2003). CM was analyzed for 120 seconds 23 over a spectral window of 1100-2000 cm⁻¹. Multiple grains of CM were analyzed from each 24 sample (the total range is between 10 and 15 grains per sample), to allow evaluation of in-sample 25 variation. 26 27 The center positions, heights, widths, and areas of four first-order Raman peaks, 28 including the G peak and three defect bands, D1, D2, and D3, are shown for individual analyses on Table S2. These parameters were determined using a peak fitting program written in Matlab 29 by E. Soignard, which allowed peaks to be fit by a combination of Gaussian and Lorentzian peak 30 shape, and background slope to be removed by using a 1st-order polynomial. R1 and R2 31 32 correspond to the height and area ratios as defined in equations 1 and 2 of Rahl et al. (2005), and the peak temperature (T_{peak}) for each analysis is calculated from equation 3 of Rahl et al. (2005). 33 34 Analyses of each sample on Table S2 are ordered from low to high peak temperature. Standard means of R1, R2, and T_{peak} for all analyses from each sample are shown. The internal variation 35 36 of R1, R2, and T_{peak} from each sample is represented by 1 standard deviation on the mean. However, the calibration equation of Rahl et al. (2005) also introduces an external \pm 50 °C 37 uncertainty in T_{peak}. Therefore, after Cooper et al. (2013), in order to present a more 38 representative uncertainty, we calculated a propagated standard error (SE) by adding internal and 39 external uncertainties quadratically, and dividing by the square root of the number of analyses 40 (n). Mean T_{peak} with this propagated 2 SE uncertainty is reported for each sample on Table 1 in 41 42 43 the text. At 2 SE, typical error ranges are \pm 35-60 °C. - Table S2 (following 5 pages): Supporting data for RSCM peak temperature determinations. Data - 45 for individual CM spot analyses for each sample are shown, and are ordered from low to high - 46 temperature. | sample | and | pea | ak cente | er posit | ion | | peak | width | | | peak a | mplitude | | | peak | area | | rat | ios | |--|--
--|--|--|--|--|--|--|--|---|--|--|--|--|---|--|---|---|--| | spot nur | mber | D1 | D3 | G | D2 | R1 | R2 | | BU13-103A | spot10 | 1350 | 1530 | 1582 | 1621 | 57 | 100 | 16 | 20 | 360 | 90 | 5400 | 420 | 32233 | 9571 | 135717 | 8933 | 0.067 | 0.182 | | BU13-103A | 77.55 | 1349 | 1530 | 1582 | 1620 | 48 | 100 | 17 | 19 | 500 | 0 | 5500 | 400 | 31611 | 0 | 146869 | 8082 | 0.091 | 0.169 | | | | 1352 | 1540 | 1582 | 1620 | 55 | 70 | 17 | 19 | 200 | 50 | 3200 | 430 | 16163 | 3722 | 85451 | 8689 | 0.063 | 0.147 | | BU13-103A | | and the state of t | | | 471272 | | | | | 4.00000000 | | | | EGAN MONEY | | | | 25.00 | | | BU13-103A | | 1352 | 1530 | 1582 | 1620 | 50 | 75 | 17 | 15 | 320 | 0 | 7000 | 200 | 25133 | 0 | 186925 | 3190 | 0.046 | 0.117 | | BU13-103A | _spot11 | 1352 | 1530 | 1582 | 1619 | 43 | 100 | 16 | 20 | 370 | 0 | 7600 | 240 | 23377 | 0 | 191009 | 5105 | 0.049 | 0.107 | | BU13-103A | _spot17 | 1350 | 1540 | 1581 | 1618 | 45 | 70 | 16 | 19 | 310 | 0 | 6850 | 290 | 20497 | 0 | 172159 | 5860 | 0.045 | 0.103 | | BU13-103A | spot9 | 1351 | 1520 | 1581 | 1618 | 48 | 120 | 16 | 14 | 230 | 0 | 7800 | 50 | 17342 | 0 | 183373 | 744 | 0.029 | 0.086 | | BU13-103A | | 1345 | 1530 | 1582 | 1619 | 65 | 65 | 17 | 20 | 110 | 80 | 4400 | 320 | 11231 | 5530 | 117496 | 6806 | 0.025 | 0.083 | | BU13-103A | | 1351 | 1530 | 1582 | 1620 | 45 | 65 | 16 | 15 | 220 | 0 | 7600 | 130 | 15551 | 0 | 191009 | 2074 | 0.029 | 0.075 | | | | | | | | | | | | | | | | I | | | | | | | BU13-103A | | 1355 | 1550 | 1581 | 1610 | 55 | 70 | 16 | 50 | 150 | 0 | 8000 | 0 | 12959 | 0 | 201062 | 0 | 0.019 | 0.061 | | BU13-103A | | 1353 | 1530 | 1582 | 1622 | 49 | 75 | 16 | 15 | 140 | 20 | 7080 | 120 | 10080 | 1595 | 177940 | 1914 | 0.020 | 0.053 | | BU13-103A | _spot13 | 1352 | 1530 | 1582 | 1621 | 30 | 100 | 16 | 13 | 200 | 0 | 6900 | 220 | 9425 | 0 | 173416 | 3042 | 0.029 | 0.051 | | BU13-103A | _spot22 | 1353 | 1530 | 1582 | 1620 | 39 | 65 | 16 | 15 | 100 | 0 | 6500 | 0 | 6126 | 0 | 163363 | 0 | 0.015 | 0.036 | | BU13-103A | spot16 | 1351 | 1540 | 1582 | 1620 | 42 | 70 | 16 | 19 | 120 | 0 | 8700 | 0 | 7405 | 0 | 218655 | 0 | 0.014 | 0.033 | | BU13-103A | | 1355 | 1530 | 1581 | 1619 | 30 | 100 | 16 | 20 | 90 | 0 | 8100 | 0 | 4241 | 0 | 203575 | 0 | 0.011 | 0.020 | | DO13-103A | _spot12 | 1555 | 1330 | 1301 | 1015 | 30 | 100 | 10 | 20 | 50 | U | 0100 | U | 4241 | U | 203373 | 950 | mean: | 0.037 | 0.088 | | | | | | | | | | | | | | | | | | | iternal): | 0.022 | 0.048 | | | | | | | | | | | | | | | | | | 1 SE (in | ternal): | 0.006 | 0.012 | | | | | | | | | | | | | | | | | | prop. 2 SE | (interna | and ext | ternal): | n: | | BU13-113E | spot3 | 1349 | 1530 | 1581 | 1620 | 41 | 65 | 22 | 20 | 180 | 0 | 300 | 40 | 8972 | 0 | 10367 | 851 | 0.600 | 0.444 | | | | | | | | | 75 | | | 2470 | 0 | 9900 | | | 0 | | | | 0.303 | | BU13-113E | | 1352 | 1540 | 1582 | 1623 | 41 | | 19 | 12 | 300000000000000000000000000000000000000 | | | 490 | 123111 | | 276381 | 6253 | 0.249 | | | BU13-113E | | 1363 | 1540 | 1582 | 1625 | 53 | 70 | 16 | 18 | 330 | 120 | 3620 | 0 | 27473 | 8933 | 90981 | 0 | 0.091 | 0.232 | | BU13-113E | _spot7 | 1353 | 1530 | 1580 | 1619 | 65 | 65 | 20 | 22 | 66 | 0 | 560 | 25 | 5215 | 0 | 17593 | 585 | 0.118 | 0.223 | | BU13-113E | _spot16 | 1357 | 1550 | 1582 | 1623 | 41 | 70 | 18 | 9 | 1100 | 0 | 5950 | 550 | 47963 | 0 | 162799 | 5264 | 0.185 | 0.222 | | BU13-113E | | 1352 | 1530 | 1582 | 1621 | 37 | 55 | 19 | 20 | 450 | 20 | 3450 | 550 | 22775 | 1170 | 102966 | 11698 | 0.130 | 0.166 | | BU13-113E | The state of s | 1345 | 1530 | 1578 | 1615 | 75 | 65 | 18 | 20 | 11 | 0 | 230 | 7 | 1003 | 0 | 6083 | 149 | 0.048 | 0.139 | | BU13-113E | | 1353 | 1550 | 1581 | 1622 | 44 | 70 | 18 | 11 | 870 | 0 | 7900 | 230 | 40710 | 0 | 223367 | 2691 | 0.048 | 0.153 | | | | | | | I | | | | | | | | | | | | | l | | | BU13-113E | | 1350 | 1530 | 1580 | 1618 | 50 | 65 | 20 | 24 | 41 | 0 | 430 | 23 | 2180 | 0 | 12636 | 587 | 0.095 | 0.142 | | BU13-113E | _spot25 | 1361 | 1540 | 1582 | 1625 | 47 | 75 | 17 | 18 | 310 | 50 | 5300 | 0 | 19191 | 3988 | 127816 | 0 | 0.058 | 0.131 | | BU13-113E | _spot19 | 1359 | 1520 | 1582 | 1621 | 42 | 75 | 18 | 19 | 270 | 70 | 4600 | 350 | 14936 | 5583 | 130062 | 7072 | 0.059 | 0.098 | | BU13-113E | spot22 | 1359 | 1510 | 1582 | 1625 | 38 | 70 | 18 | 18 | 220 | 30 | 3950 | 90 | 11011 | 2233 | 111684 | 1723 | 0.056 | 0.089 | | BU13-113E | | 1361 | 1520 | 1582 | 1621 | 40 | 65 | 18 | 17 | 180 | 60 | 4100 | 70 | 10214 | 4148 | 115925 | 1266 | 0.044 | 0.080 | | BU13-113E | - | 1363 | 1530 | 1582 | 1622 | 47 | 70 | 17 | 13 | 170 | 0 | 6300 | 80 | 12551 | 0 | 168232 | 1106 | 0.027 | 0.069 | | | T ********************************* | | | | 31123312 | | | | | 34000000 | | | | | | | | | | | BU13-113E | _spot1/ | 1362 | 1530 | 1581 | 1621 | 45 | 70 | 17 | 9 | 180 | 50 | 8000 | 100 | 12723 | 3722 | 213628 | 957 | 0.022 | 0.056 | | | | | | | | | | | | | | | | | | | mean: | 0.126 | 0.170 | | | | | | | | | | | | | | | | | | 1σ (ir | ternal): | 0.140 | 0.100 | | | | | | | | | | | | | | | | | | 1 SE (ir | ternal): | 0.036 | 0.026 | | | | | | | | | | | | | | | | | | prop. 2 SE | (interna | and ext | ternal): | n: | | BU13-114 | spot1 | 1351 | 1510 | 1581 | 1622 | 40 | 75 | 21 | 16 | 360 | 0 | 820 | 70 | 18967 | 0 | 24428 | 1191 | 0.439 | 0.425 | | BU13-114 | | 1352 | 1530 | 1583 | 1621 | 43 | 70 | 22 | 18 | 1150 | 0 | 1850 | 400 | 60115 | 0 | 63931 | 7657 | 0.622 | 0.456 | | | | 1355 | 1520 | 1581 | 1621 | 53 | 80 | 22 | 18 | 33 | 2 | 145 | 6 | 2747 | 170 | 5011 | 115 | 0.228 | 0.349 | | BU13-114 | | | | | 266,550,000 | | | | | 200000 | | | | | | | | 23.4422.000 | | | BU13-114 | | 1352 | 1530 | 1583 | 1622 | 44 | 70 | 22 | 18 | 1750 | 6 | 3600 | 550 | 89700 | 447 | 120389 | 10528 | 0.486 | 0.407 | | BU13-114_ | spot17 | 1352 | 1530 | 1582 | 1623 | 46 | 70 | 21 | 14 | 1710 | 0 | 4600 | 350 | 95625 | 0 | 151739 | 5211 | 0.372 | 0.379 | | BU13-114 | _spot6 | 1356 | 1530 | 1582 | 1617 | 45 | 70 | 23 | 18 | 28 | 6 | 110 | 10 | 1660 | 447 | 3974 | 191 | 0.255 | 0.285 | | BU13-114 | spot10 | 1356 | 1530 | 1582 | 1624 | 38 | 70 | 17 | 11 | 2800 | 0 | 15500 | 1450 | 134745 | 0 | 400537 | 16962 | 0.181 | 0.244 | | BU13-114_ | | 1356 | 1530 | 1582 | 1622 | 44 | 70 | 20 | 14 | 350 | 55 | 1800 | 150 | 18721 | 4094 | 56549 | 2233 | 0.194 | 0.242 | | | | | 1530 | | I | 43 | 70 | | | l | | | | | | | 5934 | l | | | BU13-114_ | 33333 | 1355 | | 1581 | 1621 | | | 20 | 18 | 450 | 50 | 2500 | 310 | 25487 | 3722 | 78540 | | 0.180 | 0.232 | | BU13-114_ | spot11 | 1356 | 1530 | 1582 | 1624 | 41 | 70 | 18 | 11 | 600 | 0 | 3900 | 250 |
32402 | 0 | 110270 | 2925 | 0.154 | 0.223 | | BU13-114 | _spot9 | 1357 | 1530 | 1583 | 1623 | 31 | 70 | 17 | 12 | 750 | 0 | 3050 | 900 | 28264 | 0 | 78815 | 11486 | 0.246 | 0.238 | | | _spot5 | 1357 | 1525 | 1583 | 1617 | 39 | 70 | 25 | 10 | 27 | 7 | 110 | 22 | 1387 | 521 | 4320 | 234 | 0.245 | 0.233 | | BU13-114 | | 1357 | 1530 | 1582 | 1624 | 47 | 70 | 20 | 12 | 570 | 50 | 3980 | 100 | 32568 | 3722 | 125035 | 1276 | 0.143 | 0.205 | | | | | | 1582 | 1623 | 49 | 70 | 19 | 12 | 350 | 55 | 3650 | 150 | 24329 | 4094 | 108935 | 1914 | 0.096 | 0.180 | | BU13-114_ | - | 1350 | | | 1023 | | | | | 17 A. C. | | | | | | | | Manager St. | | | BU13-114_
BU13-114_ | spot16 | 1358 | 1530 | | 1000 | 43 | 70 | 17 | 13 | 500 | 0 | 4300 | 230 | 25046 | 0 | 114825 | 3180 | 0.116 | 0.175 | | BU13-114_ | spot16 | | 1530 | 1583 | 1623 | 10.00 | | | | | | | | | | | mean: | 0.264 | 0.285 | | BU13-114_
BU13-114_ | spot16 | | | | 1623 | | | | | | | | | | | | | | 0 000 | | BU13-114_
BU13-114_ | spot16 | | | | 1623 | 11.5 | | | | | | | | | | 1σ (in | ternal): | 0.145 | 0.090 | | BU13-114_
BU13-114_ | spot16 | | | | 1623 | | | | | | | | | | | | iternal):
iternal): | 150000000000 | | | BU13-114_
BU13-114_ | spot16 | | | | 1623 | | | | | | | | | | 1 | | ternal): | 0.038 | 0.023 | | BU13-114_
BU13-114_ | spot16 | | | | 1623 | | | | | | | | | | ı | 1 SE (ir | ternal): | 0.038 | 0.023
ternal): | | BU13-114_
BU13-114_
BU13-114 | _spot16
_spot8 | 1357 | 1530 | 1583 | ************************************** | W 70 | 70 | 25 | 25 | 100 | 0 | 2/15 | 24 | 7540 | | 1 SE (ir
prop. 2 SE | iternal):
(interna | 0.038
and ext | 0.023
ternal):
n: | | BU13-114_
BU13-114_
BU13-114_ | _spot16
_spot8 | 1357 | 1530
1550 | 1583
1582 | 1617 | 48 | 70 | 25 | 25 | 100 | 0 | 245 | 24 | 7540 | 0 | 1 SE (ir | iternal):
(interna
638 | 0.038
and ext | 0.023
ternal):
n:
0.439 | | BU13-114_
BU13-114_
BU13-114_
BU13-121_
BU13-121_
BU13-121_ | _spot16
_spot8 | 1357
1351
1353 | 1530
1550
1550 | 1583
1582
1581 | 1617
1619 | 48
47 | 70 | 25 | 25 | 90 | 0 | 197 | 29 | 6644 | 0 | 1 SE (in
prop. 2 SE
9000
7736 | (internal):
(internal):
638
771 | 0.038
and ext
0.408
0.457 | 0.023
ternal):
n:
0.439
0.439 | | BU13-114_
BU13-114_
BU13-114_ | _spot16
_spot8 | 1357 | 1530
1550 | 1583
1582
1581
1582 | 1617
1619
1619 | 48 | | | | | | | | | 0 | 1 SE (ir | iternal):
(interna
638 | 0.038
and ext | 0.023
ternal):
n:
0.439 | | BU13-114_
BU13-114_
BU13-114_
BU13-121_
BU13-121_
BU13-121_ | spot16
_spot8
spot10
_spot8
spot11 | 1357
1351
1353 | 1530
1550
1550 | 1583
1582
1581 | 1617
1619 | 48
47 | 70 | 25 | 25 | 90 | 0 | 197 | 29 | 6644 | 0 | 1 SE (in
prop. 2 SE
9000
7736 | (internal):
(internal):
638
771 | 0.038
and ext
0.408
0.457 | 0.023
ternal):
n:
0.439
0.439 | | BU13-114_
BU13-114_
BU13-114_
BU13-121_
BU13-121_
BU13-121_
BU13-121_ | spot16
_spot8
spot10
_spot8
spot11
_spot9 | 1357
1351
1353
1353
1350 | 1530
1550
1550
1540
1550 | 1583
1582
1581
1582
1581 | 1617
1619
1619
1620 | 48
47
52
49 | 70
75
70 | 25
26
25 | 25
27
12 | 90
105
70 | 0
10
0 | 197
285
210 | 29
24
50 | 6644
8577
5388 | 0
0
798
0 | 9000
7736
11640
8247 | 638
771
689
638 | 0.038
l and ext
0.408
0.457
0.368
0.333 | 0.023
ternal):
n:
0.439
0.439
0.410
0.377 | | BU13-114_BU13-114_BU13-114_BU13-121_BU1 | _spot16
_spot8
_spot10
_spot8
_spot11
_spot9
_spot7 | 1357
1351
1353
1353
1350
1352 | 1550
1550
1540
1550
1550 | 1583
1582
1581
1582
1581
1581 | 1617
1619
1619
1620
1618 | 48
47
52
49
42 | 70
75
70
70 | 25
26
25
23 | 25
27
12
22 | 90
105
70
140 | 0
10
0
0 | 197
285
210
420 | 29
24
50
40 | 6644
8577
5388
9236 | 0
0
798
0 | 9000
7736
11640
8247
15174 | 638
771
689
638
936 | 0.408
0.408
0.457
0.368
0.333
0.333 | 0.023
ternal):
n:
0.439
0.439
0.410
0.377
0.364 | | BU13-114_
BU13-114_
BU13-114_
BU13-121_
BU13-121_
BU13-121_
BU13-121_
BU13-121_
BU13-121_ | _spot10
_spot8
_spot10
_spot8
_spot11
_spot9
_spot7
_spot18 | 1357
1351
1353
1353
1350
1352
1354 | 1550
1550
1550
1550
1550
1550 | 1582
1581
1582
1581
1581
1581
1583 | 1617
1619
1619
1620
1618
1623 | 48
47
52
49
42
44 | 70
75
70
70
75 | 25
26
25
23
23 | 25
27
12
22
19 | 90
105
70
140
1130 | 0
10
0
0 | 197
285
210
420
4000 | 29
24
50
40
210 | 6644
8577
5388
9236
78100 | 0
0
798
0
0 | 9000
7736
11640
8247
15174
144513 | 638
771
689
638
936
4243 | 0.038
l and ext
0.408
0.457
0.368
0.333
0.333
0.282 | 0.023
ternal):
n:
0.439
0.439
0.410
0.377
0.364
0.344 | | BU13-114_BU13-114_BU13-114_BU13-121_BU1 | spot16
_spot8
spot10
_spot8
spot11
_spot9
_spot7
_spot18
_spot17 | 1357
1351
1353
1353
1350
1352
1354
1355 | 1550
1550
1550
1550
1550
1550 | 1582
1581
1582
1581
1581
1583
1583 | 1617
1619
1619
1620
1618
1623
1623 | 48
47
52
49
42
44 | 70
75
70
70
75
75 | 25
26
25
23
23
23 | 25
27
12
22
19
19 | 90
105
70
140
1130
1200 | 0
10
0
0
0 | 197
285
210
420
4000
4300 |
29
24
50
40
210
240 | 6644
8577
5388
9236
78100
82938 | 0
0
798
0
0
0 | 9000
7736
11640
8247
15174
144513
155352 | 638
771
689
638
936
4243
4849 | 0.038
l and ext
0.408
0.457
0.368
0.333
0.333
0.282
0.279 | 0.023
ternal):
n:
0.439
0.439
0.410
0.377
0.364
0.344 | | BU13-114_
BU13-114_
BU13-114_
BU13-121_
BU13-121_
BU13-121_
BU13-121_
BU13-121_
BU13-121_ | spot16
_spot8
spot10
_spot8
spot11
_spot9
_spot7
_spot18
_spot17 | 1357
1351
1353
1353
1350
1352
1354 | 1550
1550
1550
1550
1550
1550 | 1582
1581
1582
1581
1581
1581
1583 | 1617
1619
1619
1620
1618
1623 | 48
47
52
49
42
44 | 70
75
70
70
75 | 25
26
25
23
23 | 25
27
12
22
19 | 90
105
70
140
1130 | 0
10
0
0 | 197
285
210
420
4000 | 29
24
50
40
210 | 6644
8577
5388
9236
78100 | 0
0
798
0
0 | 9000
7736
11640
8247
15174
144513 | 638
771
689
638
936
4243 | 0.038
l and ext
0.408
0.457
0.368
0.333
0.333
0.282 | 0.023
ternal):
n:
0.439
0.439
0.410
0.377
0.364
0.344 | | BU13-114_BU13-114_BU13-114_BU13-121_BU1 | spot16
_spot8
spot10
_spot8
spot11
_spot9
_spot7
spot18
_spot17
_spot20 | 1357
1351
1353
1353
1350
1352
1354
1355 | 1550
1550
1550
1550
1550
1550 | 1582
1581
1582
1581
1581
1583
1583 | 1617
1619
1619
1620
1618
1623
1623 | 48
47
52
49
42
44 | 70
75
70
70
75
75 | 25
26
25
23
23
23 | 25
27
12
22
19
19 | 90
105
70
140
1130
1200 | 0
10
0
0
0 | 197
285
210
420
4000
4300 | 29
24
50
40
210
240 | 6644
8577
5388
9236
78100
82938 | 0
0
798
0
0
0 | 9000
7736
11640
8247
15174
144513
155352 | 638
771
689
638
936
4243
4849 | 0.038
l and ext
0.408
0.457
0.368
0.333
0.333
0.282
0.279 | 0.023
ternal):
n:
0.439
0.439
0.410
0.377
0.364
0.344 | | BU13-114
BU13-114
BU13-114
BU13-121
BU13-121
BU13-121
BU13-121
BU13-121
BU13-121
BU13-121
BU13-121
BU13-121 | spot16
_spot8
spot10
_spot8
spot11
_spot9
_spot7
_spot7
spot18
spot17
spot20
_spot13 | 1357
1351
1353
1353
1350
1352
1354
1355
1353
1348 | 1550
1550
1540
1550
1550
1550
1550 | 1582
1581
1582
1581
1581
1583
1583
1583
1582
1581 | 1617
1619
1619
1620
1618
1623
1623
1621
1618 | 48
47
52
49
42
44
44
49
61 | 70
75
70
70
75
75
75
75 | 25
26
25
23
23
23
20
17 | 25
27
12
22
19
19
19 | 90
105
70
140
1130
1200
790
430 | 0
10
0
0
0
0
0
0 | 197
285
210
420
4000
4300
4850
4950 | 29
24
50
40
210
240
300
550 | 6644
8577
5388
9236
78100
82938
54914
41202 | 0
0
798
0
0
0
0
0
0
3988 | 9000
7736
11640
8247
15174
144513
155352
152367
132183 | 638
771
689
638
936
4243
4849
6062 | 0.408
0.457
0.368
0.333
0.333
0.282
0.279
0.163
0.087 | 0.023
ternal):
n:
0.439
0.439
0.410
0.377
0.364
0.344
0.341
0.257
0.223 | | BU13-114
BU13-114
BU13-114
BU13-121
BU13-121
BU13-121
BU13-121
BU13-121
BU13-121
BU13-121
BU13-121
BU13-121 | spot16
_spot8
spot10
_spot8
spot11
_spot9
_spot7
spot18
spot17
spot20
spot13
_spot19 | 1357
1351
1353
1350
1352
1354
1355
1353
1348
1356 | 1550
1550
1540
1550
1550
1550
1550
1550 | 1582
1581
1582
1581
1583
1583
1583
1582
1581
1584 | 1617
1619
1619
1620
1618
1623
1623
1621
1618
1617 | 48
47
52
49
42
44
44
49
61
46 | 70
75
70
70
75
75
75
75
75 | 25
26
25
23
23
23
20
17
27 | 25
27
12
22
19
19
19
19 | 90
105
70
140
1130
1200
790
430
1220 | 0
10
0
0
0
0
0
0
50 | 197
285
210
420
4000
4300
4850
4950
4050 | 29
24
50
40
210
240
300
550
470 | 6644
8577
5388
9236
78100
82938
54914
41202
65376 | 0
0
798
0
0
0
0
0
3988 | 9000
7736
11640
8247
15174
144513
155352
152367
132183
166219 | 638
771
689
638
936
4243
4849
6062
11113
11496 | 0.408
0.457
0.368
0.333
0.333
0.282
0.279
0.163
0.087
0.301 | 0.023
ternal):
n:
0.439
0.439
0.410
0.377
0.364
0.344
0.341
0.257
0.223
0.269 | | BU13-114
BU13-114
BU13-114
BU13-121
BU13-121
BU13-121
BU13-121
BU13-121
BU13-121
BU13-121
BU13-121
BU13-121
BU13-121 | spot16
_spot8
spot10
_spot8
spot11
_spot9
_spot7
spot18
spot17
spot20
spot13
spot19
spot14 | 1351
1353
1353
1350
1352
1354
1355
1353
1348
1356
1355 | 1550
1550
1550
1540
1550
1550
1550
1550 | 1582
1581
1582
1581
1583
1583
1583
1582
1581
1584
1584 | 1617
1619
1619
1620
1618
1623
1623
1621
1618
1617
1619 | 48
47
52
49
42
44
44
49
61
46
47 | 70
75
70
70
75
75
75
75
75
75 | 25
26
25
23
23
23
20
17
27 | 25
27
12
22
19
19
19
19
23
19 | 90
105
70
140
1130
1200
790
430
1220
400 | 0
10
0
0
0
0
0
0
50
0 | 197
285
210
420
4000
4300
4850
4950
4050
3950 | 29
24
50
40
210
240
300
550
470
320 | 6644
8577
5388
9236
78100
82938
54914
41202
65376
29531 | 0
0
798
0
0
0
0
0
3988
0 | 9000
7736
11640
8247
15174
144513
155352
152367
132183
166219
105479 | 638
771
689
638
936
4243
4849
6062
11113
11496
6466 | 0.408
0.457
0.368
0.333
0.333
0.282
0.279
0.163
0.087
0.301 | 0.023
ternal):
0.439
0.439
0.410
0.377
0.364
0.344
0.341
0.257
0.223
0.269
0.209 | |
BU13-114_BU13-114_BU13-114_BU13-121_BU1 | spot16
_spot8
spot10
_spot8
spot11
_spot9
_spot7
spot18
spot17
spot20
_spot13
spot19
spot14
_spot16 | 1357
1351
1353
1350
1352
1354
1355
1353
1348
1356 | 1550
1550
1550
1550
1550
1550
1550
1550 | 1582
1581
1582
1581
1583
1583
1583
1584
1584
1584
1582
1582 | 1617
1619
1619
1620
1618
1623
1623
1621
1618
1617 | 48
47
52
49
42
44
44
49
61
46 | 70
75
70
70
75
75
75
75
75 | 25
26
25
23
23
23
20
17
27 | 25
27
12
22
19
19
19
19 | 90
105
70
140
1130
1200
790
430
1220 | 0
10
0
0
0
0
0
0
50 | 197
285
210
420
4000
4300
4850
4950
4050 | 29
24
50
40
210
240
300
550
470 | 6644
8577
5388
9236
78100
82938
54914
41202
65376 | 0
0
798
0
0
0
0
0
3988 | 9000
7736
11640
8247
15174
144513
155352
152367
132183
166219 | 638
771
689
638
936
4243
4849
6062
11113
11496 | 0.038
and ext
0.408
0.457
0.368
0.333
0.282
0.279
0.163
0.087
0.301
0.101
0.117 | 0.023
ternal):
n:
0.439
0.439
0.410
0.377
0.364
0.344
0.341
0.257
0.223
0.269 | | BU13-121 spot15 | 1356 | 1550 | 1582 | 1619 | 47 | 75 | 17 | 19 | 330 | 0 | 5400 | 0 | 24363 | 0 | 144199 | 0 | 0.061 | 0.145 | 602 | |--|--|--|--|--|---|---|--|---|---|--|--|--|--|---|--
--|--|---|---| | BU13-121_spot21 | 1354 | 1550 | 1582 | 1624 | 49 | 75 | 17 | 20 | 290 | 0 | 4600 | 40 | 20158 | 0 | 122836 | 851 | 0.063 | 0.140 | 608 | | DOID ILI_SPORLI | 155 | 1550 | IJUL | 1021 | 1.5 | , , | | | 250 | | 1000 | 10 | 1 20250 | | ILLOSO | mean: | 0.227 | 0.287 | 498 | | | | | | | | | | | | | | | | | 1 - (:- | | | 100000000000000000000000000000000000000 | 2000 | | | | | | | | | | | | | | | | | | iternal): | 0.135 | 0.104 | 74 | | | | | | | | | | | | | | | | | | iternal): | | 0.027 | 19 | | | | | | | | | | | | | | | | 1 | prop. 2 SE | (interna | and ext | ternal): | 46 | n: | 15 | | BU13-122_spot18 | 1347 | 1550 | 1582 | 1616 | 77 | 70 | 21 | 29 | 1400 | 70 | 5750 | 900 | 152925 | 5211 | 189674 | 27757 | 0.243 | 0.413 | 370 | | BU13-122_spot16 | 1349 | 1550 | 1582 | 1613 | 71 | 70 | 20 | 30 | 2070 | 30 | 7600 | 1350 | 193579 | 2233 | 238761 | 43071 | 0.272 | 0.407 | 384 | | BU13-122_spot11 | 1349 | 1550 | 1581 | 1614 | 73 | 70 | 21 | 30 | 2130 | 70 | 10000 | 1150 | 220578 | 5211 | 329867 | 36690 | 0.213 | 0.376 | 401 | | BU13-122_spot19 | 1347 | 1550 | 1581 | 1617 | 70 | 70 | 21 | 25 | 1460 | 0 | 6550 | 930 | 144981 | 0 | 216063 | 24726 | 0.223 | 0.376 | 404 | | BU13-122_spot20 | 1349 | 1550 | 1581 | 1615 | 71 | 70 | 20 | 29 | 1750 | 0 | 9300 | 950 | 176261 | 0 | 292168 | 29299 | 0.188 | 0.354 | 417 | | BU13-122_spot22 | 1349 | 1550 | 1582 | 1617 | 68 | 70 | 19 | 23 | 950 | 0 | 5300 | 770 | 85087 | 0 | 158179 | 18834 | 0.179 | 0.325 | 445 | | BU13-122_spot13 | 1348 | 1540 | 1581 | 1616 | 71 | 70 | 20 | 24 | 1200 | 0 | 8100 | 700 | 120865 | 0 | 254469 | 17866 | 0.148 | 0.307 | 455 | | BU13-122_spot14 | 1349 | 1540 | 1581 | 1615 | 62 | 70 | 18 | 30 | 1170 | 0 | 7600 | 750 | 102905 | 0 | 207945 | 23928 | 0.154 | 0.307 | 457 | | BU13-122_spot9 | 1351 | 1550 | 1581 | 1615 | 55 | 75 | 18 | 25 | 950 | 0 | 7650 | 640 | 76773 | 0 | 216299 | 17016 | 0.124 | 0.248 | 511 | | BU13-122_spot15 | 1350 | 1540 | 1583 | 1619 | 55 | 70 | 20 | 20 | 320 | 0 | 2000 | 700 | 24967 | 0 | 60803 | 14889 | 0.160 | 0.248 | 522 | | BU13-122_spot21 | 1351 | 1550 | 1582 | 1619 | 55 | 70 | 19 | 21 | 400 | 0 | 4100 | 600 | 33441 | 0 | 122365 | 13400 | 0.098 | 0.198 | 557 | | BU13-122_spot23 | 1347 | 1550 | 1581 | 1617 | 66 | 70 | 18 | 20 | 450 | 0 | 5000 | 470 | 36105 | 0 | 141372 | 9997 | 0.090 | 0.193 | 560 | | | | | | | | | | | | | | | | | | mean: | 0.174 | 0.313 | 457 | | | | | | | | | | | | | | | | | 1σ (ir | iternal): | 0.054 | 0.073 | 63 | | | | | | | | | | | | | | | | | | ternal): | | 0.021 | 18 | | | | | | | | | | | | | | | | 1 | prop. 2 SE | | | | 47 | | | | | | | | | | | | | | | | | r p. 2 3E | , | a.iu ca | n: | 12 | | BU13-124_spot16 | 1355 | 1540 | 1583 | 1623 | 47 | 75 | 25 | 16 | 1400 | 0 | 4200 | 370 | 96682 | 0 | 154280 | 6296 | 0.333 | 0.376 | 434 | | BU13-124_spot10 | 1354 | 1550 | 1583 | 1620 | 47 | 70 | 24 | 17 | 1130 | 0 | 3200 | 170 | 64000 | 0 | 112845 | 3073 | 0.353 | 0.356 | 461 | | BU13-124_spot10
BU13-124_spot13 | | 1540 | 1584 | 1621 | 44 | 75 | 25 | 15 | 1300 | 0 | 4100 | 560 | 84046 | 0 | 155807 | 8933 | 0.333 | 0.338 | 470 | | BU13-124_spot13
BU13-124_spot15 | 1353 | 1540 | 1584 | 1621 | 44 | 75 | 25 | 17 | 1200 | 0 | 3650 | 650 | | 0 | 134077 | 11751 | 0.317 | 0.338 | 475 | | BU13-124_spot15
BU13-124_spot8 | 1351 | 1550 | 1583 | 1622 | 47 | 70 | 26 | 16 | 1000 | 0 | 3200 | 280 | 74054
66674 | 0 | 130690 | 4764 | 0.329 | 0.337 | 475 | | The state of s | 1354 | 1550 | 1583 | 1621 | 45 | 70 | 26 | 18 | 1000 | 0 | 3400 | 410 | 100000000000000000000000000000000000000 | 0 | 134374 | 7848 | 0.294 | 0.302 | 502 | | BU13-124_spot7 | | | | 1621 | 52 | 75 | | 15 | 100000000000000000000000000000000000000 | 0 | | 360 | 61554 | | | | 10,700,100,000 | | 507 | | BU13-124_spot17 | 1352 | 1540 | 1583 | 8386 335 335 | | | 25 | | 750 | | 4300 | | 59282 | 0 | 157953 | 5743 | 0.174 | 0.266 | 20080000 | | BU13-124_spot11 | 1356 | 1550 | 1582 | 1616 | 57 | 70 | 24 | 22 | 670 | 0 | 6200 | 650 | 59989 | 0.53 | 211088 | 15208 | 0.108 | 0.210 | 547 | | BU13-124_spot14 | 1352 | 1540 | 1583 | 1620 | 61 | 75 | 25 | 16 | 400 | 0 | 3800 | 430 | 38327 | 0 | 144406 | 7317 | 0.105 | 0.202 | 555 | | BU13-124_spot4 | 1355 | 1550 | 1582 | 1617 | 66 | 70 | 22 | 21 | 590 | 0 | 5100 | 400 | 47338 | 0 | 176243 | 8933 | 0.116 | 0.204 | 556 | | BU13-124_spot9 | 1356 | 1550 | 1583 | 1621 | 45 | 70 | 22 | 17 | 650 | 0 | 5150 | 120 | 41494 | 0 | 172223 | 2169 | 0.126 | 0.192 | 572 | | BU13-124_spot18 | 1355 | 1540 | 1583 | 1622 | 42 | 75 | 23 | 17 | 750 | 0 | 6000 | 200 | 43088 | 0 | 195767 | 3616 | 0.125 | 0.178 | 586 | | BU13-124_spot5 | 1359 | 1550 | 1582 | 1619 | 50 | 70 | 22 | 16 | 590 | 0 | 5100 | 200 | 35862 | 0 | 176243 | 3403 | 0.116 | 0.166 | 596 | | | | | 1001 | 1 | | | | | | | | | | | | |
100000000000000000000000000000000000000 | | =40 | | | 1 | | 1001 | | | | | | | | | | | | | mean: | 0.216 | 0.266 | 518 | | | , | | 2002 | , | | | | | | | | | 5 | | 1σ (ir | mean:
iternal): | 0.216
0.101 | 0.073 | 51 | | | | | 2502 | , | | | | | • | | | | | | 1σ (ir
1 SE (ir | mean:
iternal):
iternal): | 0.216
0.101
0.028 | 0.073
0.020 | 51
14 | | | , | | 2502 | , | | | | | | | | | | 1 | 1σ (ir | mean:
iternal):
iternal): | 0.216
0.101
0.028 | 0.073
0.020
ternal): | 51
14
40 | | | | | | | | 75 | 22 | 22 | | 0 | | | | | 1σ (ir
1 SE (ir
prop. 2 SE | mean:
iternal):
iternal):
(interna | 0.216
0.101
0.028
and ext | 0.073
0.020
ternal):
n: | 51
14
40
13 | | BU13-125A_spot2 | 1361 | 1540 | 1583 | 1614 | 62 | 75
75 | 23 | 22 | 46 | 0 | 212 | 12 | 4480 | 0 | 1σ (ir
1 SE (ir
prop. 2 SE
5928 | mean:
aternal):
aternal):
(internal):
281 | 0.216
0.101
0.028
and ext | 0.073
0.020
ternal):
n:
0.430 | 51
14
40
13 | | BU13-125A_spot2
BU13-125A_spot6 | 1361
1354 | 1540
1540 | 1583
1584 | 1614
1625 | 62
53 | 75 | 24 | 18 | 60 | 0 | 212
190 | 12
10 | 4480
4995 | 0 | 1σ (ir
1 SE (ir
prop. 2 SE
5928
6353 | mean: aternal): aternal): (internal): 281 191 | 0.216
0.101
0.028
and ext | 0.073
0.020
ternal):
n:
0.430
0.433 | 51
14
40
13
344
369 | | BU13-125A_spot2
BU13-125A_spot6
BU13-125A_spot3 | 1361
1354
1354 | 1540
1540
1540 | 1583
1584
1582 | 1614
1625
1613 | 62
53
55 | 75
75 | 24
24 | 18
22 | 60
60 | 0 | 212
190
275 | 12
10
31 | 4480
4995
5016 | 0
0
0 | 1σ (ir
1 SE (ir
prop. 2 SE
5928
6353
7689 | mean: iternal): iternal): (internal) 281 191 725 | 0.216
0.101
0.028
and ext
0.217
0.316
0.218 | 0.073
0.020
ternal):
n:
0.430
0.433
0.395 | 51
14
40
13
344
369
382 | | BU13-125A_spot2
BU13-125A_spot6
BU13-125A_spot3
BU13-125A_spot4 | 1361
1354
1354
1355 | 1540
1540
1540
1540 | 1583
1584
1582
1583 | 1614
1625
1613
1617 | 62
53
55
43 | 75
75
75 | 24
24
24 | 18
22
24 | 60
60
60 | 0
0
0 | 212
190
275
220 | 12
10
31
20 | 4480
4995
5016
3922 | 0
0
0 | 1σ (ir
1 SE (ir
prop. 2 SE
5928
6353
7689
5615 | mean: iternal): iternal): (internal): 281 191 725 510 | 0.216
0.101
0.028
and ext
0.217
0.316
0.218
0.273 | 0.073
0.020
ternal):
n:
0.430
0.433
0.395
0.390 | 51
14
40
13
344
369
382
403 | | BU13-125A_spot2
BU13-125A_spot6
BU13-125A_spot3
BU13-125A_spot4
BU13-125A_spot1 | 1361
1354
1354
1355
1352 | 1540
1540
1540
1540
1540 | 1583
1584
1582
1583
1583 | 1614
1625
1613
1617
1622 | 62
53
55
43
51 | 75
75
75
75 | 24
24
24
23 | 18
22
24
22 | 60
60
60
45 | 0
0
0 | 212
190
275
220
205 | 12
10
31
20
10 | 4480
4995
5016
3922
3372 | 0
0
0
0 | 1σ (ir
1 SE (ir
prop. 2 SE
5928
6353
7689
5615
6928 | mean:
nternal):
nternal):
(internal):
281
191
725
510
234 | 0.216
0.101
0.028
and ext
0.217
0.316
0.218
0.273
0.220 | 0.073
0.020
ternal):
n:
0.430
0.433
0.395
0.390
0.320 | 51
14
40
13
344
369
382
403
463 | | BU13-125A_spot2
BU13-125A_spot6
BU13-125A_spot3
BU13-125A_spot4
BU13-125A_spot1
BU13-125A_spot11 | 1361
1354
1354
1355
1352
1356 | 1540
1540
1540
1540
1540
1540 | 1583
1584
1582
1583
1583
1582 | 1614
1625
1613
1617
1622
1621 | 62
53
55
43
51
40 | 75
75
75
75
75 | 24
24
24
23
19 | 18
22
24
22
11 | 60
60
60
45
700 | 0
0
0
0 | 212
190
275
220
205
3300 | 12
10
31
20
10 | 4480
4995
5016
3922
3372
36880 | 0
0
0
0
0 | 1σ (ir
1 SE (ir
prop. 2 SE
5928
6353
7689
5615
6928
95308 | mean:
hternal):
hternal):
(internal):
281
191
725
510
234
2223 | 0.216
0.101
0.028
and ext
0.217
0.316
0.218
0.273
0.220
0.212 | 0.073
0.020
ternal):
n:
0.430
0.433
0.395
0.390
0.320
0.274 | 51
14
40
13
344
369
382
403
463
509 | | BU13-125A_spot2
BU13-125A_spot6
BU13-125A_spot3
BU13-125A_spot4
BU13-125A_spot11
BU13-125A_spot11
BU13-125A_spot11 | 1361
1354
1354
1355
1352
1356
1354 | 1540
1540
1540
1540
1540
1540 | 1583
1584
1582
1583
1583
1582
1582 | 1614
1625
1613
1617
1622
1621
1617 | 62
53
55
43
51
40
45 | 75
75
75
75
75
75 | 24
24
24
23
19
21 | 18
22
24
22
11
20 | 60
60
60
45
700
900 | 0
0
0
0
0 | 212
190
275
220
205
3300
5200 | 12
10
31
20
10
190
210 | 4480
4995
5016
3922
3372
36880
59508 | 0
0
0
0
0 | 1σ (ir
1 SE (ir
prop. 2 SE
5928
6353
7689
5615
6928
95308
165991 | mean:
hternal):
hternal):
(internal):
281
191
725
510
234
2223
4467 | 0.216
0.101
0.028
and ext
0.217
0.316
0.218
0.273
0.220
0.212
0.173 | 0.073
0.020
ternal):
n:
0.430
0.433
0.395
0.390
0.320
0.274
0.259 | 51
14
40
13
344
369
382
403
463
509
514 | | BU13-125A_spot2
BU13-125A_spot6
BU13-125A_spot3
BU13-125A_spot1
BU13-125A_spot11
BU13-125A_spot115
BU13-125A_spot15 | 1361
1354
1354
1355
1352
1356
1354
1356 | 1540
1540
1540
1540
1540
1540
1540 | 1583
1584
1582
1583
1583
1582
1582 | 1614
1625
1613
1617
1622
1621
1617
1612 | 62
53
55
43
51
40
45
40 | 75
75
75
75
75
75
75 | 24
24
24
23
19
21 | 18
22
24
22
11
20
30 | 60
60
60
45
700
900
380 | 0
0
0
0
0 | 212
190
275
220
205
3300
5200
1900 | 12
10
31
20
10
190
210
320 | 4480
4995
5016
3922
3372
36880
59508
21563 | 0
0
0
0
0
0 | 1σ (ir
1 SE (ir
prop. 2 SE
5928
6353
7689
5615
6928
95308
165991
51211 | mean: aternal): (internal): 191 725 510 234 2223 4467 10209 | 0.216
0.101
0.028
and ext
0.217
0.316
0.218
0.273
0.220
0.212
0.173
0.200 | 0.073
0.020
ternal):
n:
0.430
0.433
0.395
0.390
0.320
0.274
0.259
0.260 | 51
14
40
13
344
369
382
403
463
509
514
521 | | BU13-125A_spot2
BU13-125A_spot6
BU13-125A_spot3
BU13-125A_spot4
BU13-125A_spot11
BU13-125A_spot11
BU13-125A_spot15
BU13-125A_spot13
BU13-125A_spot13 | 1361
1354
1354
1355
1352
1356
1354
1356
1355 | 1540
1540
1540
1540
1540
1540
1540
1540 | 1583
1584
1582
1583
1583
1582
1582
1582
1582 | 1614
1625
1613
1617
1622
1621
1617
1612
1619 | 62
53
55
43
51
40
45
40
48 | 75
75
75
75
75
75
75
75 | 24
24
24
23
19
21
19
21 | 18
22
24
22
11
20
30
16 | 60
60
60
45
700
900
380
1000 | 0
0
0
0
0
0 | 212
190
275
220
205
3300
5200
1900
5700 | 12
10
31
20
10
190
210
320
370 | 4480
4995
5016
3922
3372
36880
59508
21563
60787 | 0
0
0
0
0
0 | 1σ (ir
1 SE (ir
prop. 2 SE
5928
6353
7689
5615
6928
95308
165991
51211
181952 | mean: aternal): aternal): (internal): (internal): 725 510 234 2223 4467 10209 6296 | 0.216
0.101
0.028
and ext
0.217
0.316
0.218
0.273
0.220
0.212
0.173
0.200
0.175 | 0.073
0.020
ternal):
n:
0.430
0.433
0.395
0.390
0.320
0.274
0.259
0.260
0.244 | 51
14
40
13
344
369
382
403
463
509
514
521
531 | | BU13-125A_spot2
BU13-125A_spot6
BU13-125A_spot3
BU13-125A_spot4
BU13-125A_spot11
BU13-125A_spot11
BU13-125A_spot13
BU13-125A_spot13
BU13-125A_spot17
BU13-125A_spot16 | 1361
1354
1354
1355
1352
1356
1354
1356
1355
1355 | 1540
1540
1540
1540
1540
1540
1540
1540 | 1583
1584
1582
1583
1583
1582
1582
1582
1581
1581 | 1614
1625
1613
1617
1622
1621
1617
1612
1619
1622 | 62
53
55
43
51
40
45
40
48
43 | 75
75
75
75
75
75
75
75
75 | 24
24
24
23
19
21
19
21 | 18
22
24
22
11
20
30
16
11 | 60
60
60
45
700
900
380
1000
750 | 0
0
0
0
0
0 | 212
190
275
220
205
3300
5200
1900
5700
6700 | 12
10
31
20
10
190
210
320
370
240 | 4480
4995
5016
3922
3372
36880
59508
21563
60787
47386 | 0
0
0
0
0
0
0 | 1σ (ir
1 SE (ir
prop. 2 SE
5928
6353
7689
5615
6928
95308
165991
51211
181952
213873 | mean: aternal): (internal): (internal): (internal): 281 191 725 510 234 2223 4467 10209 6296 2808 | 0.216
0.101
0.028
and
ext
0.217
0.316
0.218
0.273
0.220
0.212
0.173
0.200
0.175
0.112 | 0.073
0.020
ternal):
n:
0.430
0.433
0.395
0.390
0.320
0.274
0.259
0.260
0.244
0.181 | 51
14
40
13
344
369
382
403
509
514
521
531
579 | | BU13-125A_spot2
BU13-125A_spot6
BU13-125A_spot3
BU13-125A_spot1
BU13-125A_spot11
BU13-125A_spot15
BU13-125A_spot15
BU13-125A_spot17
BU13-125A_spot16
BU13-125A_spot16
BU13-125A_spot18 | 1361
1354
1354
1355
1352
1356
1354
1356
1355
1355 | 1540
1540
1540
1540
1540
1540
1540
1540 | 1583
1584
1582
1583
1583
1582
1582
1582
1581
1581 | 1614
1625
1613
1617
1622
1621
1617
1612
1619
1622
1619 | 62
53
55
43
51
40
45
40
48
43
51 | 75
75
75
75
75
75
75
75
75
75 | 24
24
24
23
19
21
19
21
21
20 | 18
22
24
22
11
20
30
16
11 | 60
60
45
700
900
380
1000
750
250 | 0
0
0
0
0
0
0 | 212
190
275
220
205
3300
5200
1900
5700
6700
2500 | 12
10
31
20
10
190
210
320
370
240
0 | 4480
4995
5016
3922
3372
36880
59508
21563
60787
47386
16147 | 0
0
0
0
0
0
0 | 1σ (ir
1 SE (ir
prop. 2 SE
5928
6353
7689
5615
6928
95308
165991
51211
181952
213873
76003 | mean: aternal): (internal): (i | 0.216
0.101
0.028
and ext
0.217
0.316
0.218
0.273
0.220
0.212
0.173
0.200
0.175
0.112
0.100 | 0.073
0.020
ternal):
n:
0.430
0.433
0.395
0.390
0.320
0.274
0.259
0.260
0.244
0.181
0.175 | 51
14
40
13
344
369
382
403
463
509
514
521
531
579
582 | | BU13-125A_spot2
BU13-125A_spot6
BU13-125A_spot3
BU13-125A_spot4
BU13-125A_spot11
BU13-125A_spot11
BU13-125A_spot13
BU13-125A_spot16
BU13-125A_spot16
BU13-125A_spot16
BU13-125A_spot16 | 1361
1354
1355
1355
1356
1354
1356
1355
1355
1359 | 1540
1540
1540
1540
1540
1540
1540
1540 | 1583
1584
1582
1583
1583
1582
1582
1582
1581
1581
1581 | 1614
1625
1613
1617
1622
1621
1617
1612
1619
1622
1619
1623 | 62
53
55
43
51
40
45
40
48
43
51
39 | 75
75
75
75
75
75
75
75
75
75
75 | 24
24
24
23
19
21
19
21
21
20
22 | 18
22
24
22
11
20
30
16
11
16
9 | 60
60
60
45
700
900
380
1000
750
250 | 0
0
0
0
0
0
0 | 212
190
275
220
205
3300
5200
1900
5700
6700
2500
1350 | 12
10
31
20
10
190
210
320
370
240
0 | 4480
4995
5016
3922
3372
36880
59508
21563
60787
47386
16147
10369 | 0
0
0
0
0
0
0
0 | 1σ (ir
1 5E (ir
prop. 2 SE
5928
6353
7689
5615
6928
95308
165991
51211
181952
213873
76003
45146 | mean: aternal): (internal): (i | 0.216
0.101
0.028
and ext
0.217
0.316
0.218
0.273
0.220
0.212
0.173
0.200
0.175
0.112
0.100
0.185 | 0.073
0.020
ternal):
n:
0.430
0.433
0.395
0.390
0.274
0.259
0.260
0.244
0.181
0.175
0.181 | 51
14
40
13
344
369
382
403
463
509
514
521
531
579
582
601 | | BU13-125A_spot2
BU13-125A_spot6
BU13-125A_spot3
BU13-125A_spot1
BU13-125A_spot11
BU13-125A_spot15
BU13-125A_spot17
BU13-125A_spot17
BU13-125A_spot16
BU13-125A_spot18
BU13-125A_spot18
BU13-125A_spot18 | 1361
1354
1355
1355
1356
1356
1355
1355
1355
1355 | 1540
1540
1540
1540
1540
1540
1540
1540 | 1583
1584
1582
1583
1583
1582
1582
1582
1581
1581
1581
1581 | 1614
1625
1613
1617
1622
1621
1617
1612
1619
1622
1619
1623
1615 | 62
53
55
43
51
40
45
40
48
43
51
39
36 | 75
75
75
75
75
75
75
75
75
75
75
75 | 24
24
24
23
19
21
19
21
21
20
22 | 18
22
24
22
11
20
30
16
11
16
9
25 | 60
60
60
45
700
900
380
1000
750
250
250
380 | 0
0
0
0
0
0
0
0 | 212
190
275
220
205
3300
5200
1900
5700
6700
2500
1350
2600 | 12
10
31
20
10
190
210
320
370
240
0
170
340 | 4480
4995
5016
3922
3372
36880
59508
21563
60787
47386
16147
10369
18712 | 0
0
0
0
0
0
0
0
0 | 1σ (ir
1 5E (ir
prop. 2 SE
5928
6353
7689
5615
6928
95308
165991
51211
181952
213873
76003
45146
86948 | mean: aternal): (internal): (internal): (281 191 725 510 234 2223 4467 10209 6296 2808 0 1627 9040 | 0.216
0.101
0.028
and ext
0.217
0.316
0.218
0.273
0.220
0.212
0.173
0.200
0.175
0.112
0.100
0.185
0.146 | 0.073
0.020
ternal):
n:
0.430
0.433
0.395
0.390
0.274
0.259
0.260
0.244
0.181
0.175
0.181
0.163 | 51
14
40
13
344
369
382
403
463
509
514
521
531
579
582
601
609 | | BU13-125A_spot2
BU13-125A_spot6
BU13-125A_spot3
BU13-125A_spot1
BU13-125A_spot11
BU13-125A_spot15
BU13-125A_spot17
BU13-125A_spot17
BU13-125A_spot16
BU13-125A_spot18
BU13-125A_spot18
BU13-125A_spot18
BU13-125A_spot14
BU13-125A_spot14 | 1361
1354
1354
1355
1352
1356
1354
1356
1355
1355
1359
1356
1357
1360 | 1540
1540
1540
1540
1540
1540
1540
1540 | 1583
1584
1582
1583
1582
1582
1582
1581
1581
1581
1581
1581 | 1614
1625
1613
1617
1622
1621
1617
1612
1619
1622
1619
1623
1615
1617 | 62
53
55
43
51
40
45
40
48
43
51
39
36
39 | 75
75
75
75
75
75
75
75
75
75
75
75
75 | 24
24
24
23
19
21
19
21
20
22
22
20 | 18
22
24
22
11
20
30
16
11
16
9
25
22 | 60
60
60
45
700
900
380
1000
750
250
250
380
270 | 0
0
0
0
0
0
0
0 | 212
190
275
220
205
3300
5200
1900
5700
6700
2500
1350
2600
2650 | 12
10
31
20
10
190
210
320
370
240
0
170
340
420 | 4480
4995
5016
3922
3372
36880
59508
21563
60787
47386
16147
10369
18712
15472 | 0
0
0
0
0
0
0
0
0 | 1σ (ir
1 SE (ir
prop. 2 SE
5928
6353
7689
5615
6928
95308
165991
51211
181952
213873
76003
45146
86948
83252 | mean: aternal): (internal): (internal): (281 191 725 510 234 2223 4467 10209 6296 2808 0 1627 9040 9826 | 0.216
0.101
0.028
and ext
0.217
0.316
0.218
0.273
0.220
0.212
0.173
0.200
0.175
0.112
0.102 | 0.073
0.020
ternal):
n:
0.430
0.433
0.395
0.390
0.274
0.259
0.260
0.244
0.181
0.175
0.181
0.163
0.143 | 51
14
40
13
344
369
382
403
463
509
514
521
531
579
582
601
609
617 | | BU13-125A_spot2
BU13-125A_spot6
BU13-125A_spot3
BU13-125A_spot1
BU13-125A_spot11
BU13-125A_spot15
BU13-125A_spot17
BU13-125A_spot17
BU13-125A_spot16
BU13-125A_spot18
BU13-125A_spot18
BU13-125A_spot18 | 1361
1354
1355
1355
1356
1356
1355
1355
1355
1356
1357 | 1540
1540
1540
1540
1540
1540
1540
1540 | 1583
1584
1582
1583
1583
1582
1582
1582
1581
1581
1581
1581 | 1614
1625
1613
1617
1622
1621
1617
1612
1619
1622
1619
1623
1615
1617 | 62
53
55
43
51
40
45
40
48
43
51
39
36 | 75
75
75
75
75
75
75
75
75
75
75
75 | 24
24
24
23
19
21
19
21
21
20
22 | 18
22
24
22
11
20
30
16
11
16
9
25 | 60
60
60
45
700
900
380
1000
750
250
250
380 | 0
0
0
0
0
0
0
0 | 212
190
275
220
205
3300
5200
1900
5700
6700
2500
1350
2600 | 12
10
31
20
10
190
210
320
370
240
0
170
340 | 4480
4995
5016
3922
3372
36880
59508
21563
60787
47386
16147
10369
18712 | 0
0
0
0
0
0
0
0
0 | 1σ (ir
1 5E (ir
prop. 2 SE
5928
6353
7689
5615
6928
95308
165991
51211
181952
213873
76003
45146
86948 | mean: nternal): nternal): (internal): 281 191 725 510 234 2223 4467 10209 6296 2808 0 1627 9040 9826 11964 | 0.216
0.101
0.028
and ext
0.217
0.316
0.218
0.273
0.220
0.212
0.173
0.200
0.175
0.112
0.100
0.185
0.146
0.102
0.069 | 0.073
0.020
ternal):
n:
0.430
0.433
0.395
0.390
0.274
0.259
0.260
0.244
0.115
0.175
0.181
0.163
0.143
0.126 | 51
14
40
13
344
369
382
403
463
509
514
521
531
579
582
601
609
617
625 | |
BU13-125A_spot2
BU13-125A_spot6
BU13-125A_spot3
BU13-125A_spot1
BU13-125A_spot11
BU13-125A_spot15
BU13-125A_spot17
BU13-125A_spot17
BU13-125A_spot16
BU13-125A_spot18
BU13-125A_spot18
BU13-125A_spot18
BU13-125A_spot14
BU13-125A_spot14 | 1361
1354
1354
1355
1352
1356
1354
1356
1355
1355
1359
1356
1357
1360 | 1540
1540
1540
1540
1540
1540
1540
1540 | 1583
1584
1582
1583
1582
1582
1582
1581
1581
1581
1581
1581 | 1614
1625
1613
1617
1622
1621
1617
1612
1619
1622
1619
1623
1615
1617 | 62
53
55
43
51
40
45
40
48
43
51
39
36
39 | 75
75
75
75
75
75
75
75
75
75
75
75
75 | 24
24
24
23
19
21
19
21
20
22
22
20 | 18
22
24
22
11
20
30
16
11
16
9
25
22 | 60
60
60
45
700
900
380
1000
750
250
250
380
270 | 0
0
0
0
0
0
0
0 | 212
190
275
220
205
3300
5200
1900
5700
6700
2500
1350
2600
2650 | 12
10
31
20
10
190
210
320
370
240
0
170
340
420 | 4480
4995
5016
3922
3372
36880
59508
21563
60787
47386
16147
10369
18712
15472 | 0
0
0
0
0
0
0
0
0 | 1σ (ir
1 SE (ir
prop. 2 SE
5928
6353
7689
5615
6928
95308
165991
51211
181952
213873
76003
45146
86948
83252
198497 | mean: nternal): nternal): (internal): 281 191 725 510 234 2223 4467 10209 6296 2808 0 1627 9040 9826 11964 mean: | 0.216
0.101
0.028
l and ext
0.217
0.316
0.218
0.273
0.220
0.173
0.200
0.175
0.112
0.100
0.185
0.146
0.102
0.069
0.181 | 0.073
0.020
ternal):
n:
0.430
0.395
0.395
0.390
0.274
0.259
0.260
0.244
0.181
0.175
0.181
0.163
0.143
0.126
0.265 | 51
14
40
13
344
369
382
403
463
509
514
521
531
579
582
601
609
617
625
510 | | BU13-125A_spot2
BU13-125A_spot6
BU13-125A_spot3
BU13-125A_spot1
BU13-125A_spot11
BU13-125A_spot15
BU13-125A_spot17
BU13-125A_spot17
BU13-125A_spot16
BU13-125A_spot18
BU13-125A_spot18
BU13-125A_spot18
BU13-125A_spot14
BU13-125A_spot14 | 1361
1354
1354
1355
1352
1356
1354
1356
1355
1355
1359
1356
1357
1360 | 1540
1540
1540
1540
1540
1540
1540
1540 | 1583
1584
1582
1583
1582
1582
1582
1581
1581
1581
1581
1581 | 1614
1625
1613
1617
1622
1621
1617
1612
1619
1622
1619
1623
1615
1617 | 62
53
55
43
51
40
45
40
48
43
51
39
36
39 | 75
75
75
75
75
75
75
75
75
75
75
75
75 | 24
24
24
23
19
21
19
21
20
22
22
20 | 18
22
24
22
11
20
30
16
11
16
9
25
22 | 60
60
60
45
700
900
380
1000
750
250
250
380
270 | 0
0
0
0
0
0
0
0 | 212
190
275
220
205
3300
5200
1900
5700
6700
2500
1350
2600
2650 | 12
10
31
20
10
190
210
320
370
240
0
170
340
420 | 4480
4995
5016
3922
3372
36880
59508
21563
60787
47386
16147
10369
18712
15472 | 0
0
0
0
0
0
0
0
0 | 1σ (ir
1 5E (ir
prop. 2 SE
5928
6353
7689
5615
6928
95308
165991
51211
181952
213873
76003
45146
86948
83252
198497 | mean: nternal): (internal): (internal): (internal): 281 191 725 510 234 2223 4467 10209 6296 2808 0 1627 9040 9826 11964 mean: nternal): | 0.216
0.101
0.028
and ext
0.217
0.316
0.218
0.220
0.212
0.173
0.200
0.175
0.112
0.100
0.185
0.146
0.102
0.069
0.181
0.065 | 0.073
0.020
ternal):
n:
0.430
0.433
0.395
0.390
0.274
0.259
0.264
0.181
0.175
0.181
0.163
0.143
0.126
0.265
0.103 | 51
14
40
13
344
369
382
403
463
509
514
521
531
579
582
601
609
617
625
510
93 | | BU13-125A_spot2
BU13-125A_spot6
BU13-125A_spot3
BU13-125A_spot1
BU13-125A_spot11
BU13-125A_spot15
BU13-125A_spot17
BU13-125A_spot17
BU13-125A_spot16
BU13-125A_spot18
BU13-125A_spot18
BU13-125A_spot18
BU13-125A_spot14
BU13-125A_spot14 | 1361
1354
1354
1355
1352
1356
1354
1356
1355
1355
1359
1356
1357
1360 | 1540
1540
1540
1540
1540
1540
1540
1540 | 1583
1584
1582
1583
1582
1582
1582
1581
1581
1581
1581
1581 | 1614
1625
1613
1617
1622
1621
1617
1612
1619
1622
1619
1623
1615
1617 | 62
53
55
43
51
40
45
40
48
43
51
39
36
39 | 75
75
75
75
75
75
75
75
75
75
75
75
75 | 24
24
24
23
19
21
19
21
20
22
22
20 | 18
22
24
22
11
20
30
16
11
16
9
25
22 | 60
60
60
45
700
900
380
1000
750
250
250
380
270 | 0
0
0
0
0
0
0
0 | 212
190
275
220
205
3300
5200
1900
5700
6700
2500
1350
2600
2650 | 12
10
31
20
10
190
210
320
370
240
0
170
340
420 | 4480
4995
5016
3922
3372
36880
59508
21563
60787
47386
16147
10369
18712
15472 | 0
0
0
0
0
0
0
0
0 | 1σ (ir
1 5E (ir
prop. 2 SE
5928
6353
7689
5615
6928
95308
165991
51211
181952
213873
76003
45146
86948
83252
198497 | mean: nternal): (internal): (internal): (internal): (internal): 281 191 725 510 234 2223 4467 10209 6296 2808 0 1627 9040 9826 11964 mean: nternal): (iternal): (iter | 0.216 0.101 0.028 and ext 0.217 0.316 0.218 0.273 0.200 0.173 0.200 0.175 0.112 0.100 0.185 0.146 0.102 0.069 0.169 0.065 0.017 | 0.073
0.020
ternal):
n:
0.430
0.395
0.390
0.274
0.269
0.264
0.181
0.175
0.181
0.163
0.143
0.143
0.126
0.103
0.026
0.103 | 51
14
40
13
344
403
369
382
403
463
509
514
521
531
579
582
601
609
617
625
510
93
24 | | BU13-125A_spot2
BU13-125A_spot6
BU13-125A_spot3
BU13-125A_spot1
BU13-125A_spot11
BU13-125A_spot15
BU13-125A_spot17
BU13-125A_spot17
BU13-125A_spot16
BU13-125A_spot18
BU13-125A_spot18
BU13-125A_spot14
BU13-125A_spot14 | 1361
1354
1354
1355
1352
1356
1354
1356
1355
1355
1359
1356
1357
1360 | 1540
1540
1540
1540
1540
1540
1540
1540 | 1583
1584
1582
1583
1582
1582
1582
1581
1581
1581
1581
1581 | 1614
1625
1613
1617
1622
1621
1617
1612
1619
1622
1619
1623
1615
1617 | 62
53
55
43
51
40
45
40
48
43
51
39
36
39 | 75
75
75
75
75
75
75
75
75
75
75
75
75 | 24
24
24
23
19
21
19
21
20
22
22
20 | 18
22
24
22
11
20
30
16
11
16
9
25
22 | 60
60
60
45
700
900
380
1000
750
250
250
380
270 | 0
0
0
0
0
0
0
0 | 212
190
275
220
205
3300
5200
1900
5700
6700
2500
1350
2600
2650 | 12
10
31
20
10
190
210
320
370
240
0
170
340
420 | 4480
4995
5016
3922
3372
36880
59508
21563
60787
47386
16147
10369
18712
15472 | 0
0
0
0
0
0
0
0
0 | 1σ (ir
1 5E (ir
prop. 2 SE
5928
6353
7689
5615
6928
95308
165991
51211
181952
213873
76003
45146
86948
83252
198497 | mean: nternal): (internal): (internal): (internal): (internal): 281 191 725 510 234 2223 4467 10209 6296 2808 0 1627 9040 9826 11964 mean: nternal): (iternal): (iter | 0.216 0.101 0.028 and ext 0.217 0.316 0.218 0.273 0.200 0.173 0.200 0.175 0.112 0.100 0.185 0.146 0.102 0.069 0.169 0.065 0.017 |
0.073
0.020
ternal):
0.430
0.433
0.395
0.390
0.274
0.259
0.260
0.244
0.181
0.175
0.181
0.163
0.126
0.260
0.244
0.181
0.163
0.126
0.260
0.274
0.181
0.163
0.181
0.163
0.163
0.163
0.164
0.164
0.165
0.164
0.165
0.164
0.165
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166
0.166 | 51
14
40
13
344
369
382
403
463
5509
514
521
531
579
601
609
617
625
510
93
24
55 | | BU13-125A_spot2
BU13-125A_spot6
BU13-125A_spot3
BU13-125A_spot1
BU13-125A_spot11
BU13-125A_spot15
BU13-125A_spot17
BU13-125A_spot16
BU13-125A_spot18
BU13-125A_spot18
BU13-125A_spot18
BU13-125A_spot18
BU13-125A_spot14
BU13-125A_spot14 | 1361
1354
1354
1355
1356
1356
1356
1355
1355
1356
1357
1360
1356 | 1540
1540
1540
1540
1540
1540
1540
1540 | 1583
1584
1582
1583
1583
1582
1582
1582
1581
1581
1581
1582
1582 | 1614
1625
1613
1617
1622
1619
1622
1619
1615
1615
1617
1610 | 62
53
55
43
51
40
45
40
48
43
51
39
36
39
44 | 75
75
75
75
75
75
75
75
75
75
75
75
75
7 | 24
24
24
23
19
21
19
21
20
22
22
20
19 | 18
22
24
22
11
20
30
16
11
16
9
25
22
25 | 60
60
60
45
700
900
380
1000
750
250
250
250
470 | 0
0
0
0
0
0
0
0
0
0
0 | 212
190
275
220
205
3300
5200
1900
5700
6700
2500
1350
2600
2650
6850 | 12
10
31
20
190
210
320
370
240
0
170
340
420
450 | 4480
4995
5016
3922
3372
36880
59508
21563
60787
47386
16147
10369
18712
15472
30386 | 0
0
0
0
0
0
0
0
0 | 1σ (ir
1 SE (ir
prop. 2 SE
5928
6353
7689
5615
6928
95308
165991
51211
181952
213873
76003
45146
86948
83252
198497
1σ (ir
1 SE (ir | mean: nternal): nternal): (internal): 281 191 725 510 234 42223 4467 10209 6296 2808 0 1627 9040 9826 11964 mean: nternal): nternal): (internal): | 0.216 0.101 0.028 and ext 0.217 0.316 0.218 0.273 0.200 0.173 0.200 0.175 0.112 0.100 0.102 0.069 0.181 0.065 0.017 and ext | 0.073 0.020 ternal); 0.430 0.430 0.395 0.390 0.274 0.181 0.175 0.181 0.175 0.181 0.163 0.143 0.126 0.026 0.026 0.027 ternal); | 51
14
40
13
344
369
382
403
509
514
521
531
579
582
601
602
601
625
510
93
24
55
15 | | BU13-125A_spot2
BU13-125A_spot6
BU13-125A_spot6
BU13-125A_spot1
BU13-125A_spot11
BU13-125A_spot11
BU13-125A_spot15
BU13-125A_spot16
BU13-125A_spot16
BU13-125A_spot18
BU13-125A_spot18
BU13-125A_spot10
BU13-125A_spot10 | 1361
1354
1354
1355
1352
1356
1355
1355
1357
1356
1357
1356 | 1540
1540
1540
1540
1540
1540
1540
1540 | 1583
1584
1582
1583
1583
1582
1582
1581
1581
1581
1582
1582
1582 | 1614
1625
1613
1617
1622
1621
1619
1623
1615
1617
1610 | 62
53
55
43
51
40
45
40
48
43
51
39
36
39
44 | 75
75
75
75
75
75
75
75
75
75
75
75
75
7 | 24
24
24
23
19
21
19
21
20
22
22
20
19 | 18
22
24
22
11
20
30
16
11
16
9
25
22
25 | 60
60
60
45
700
900
380
1000
750
250
250
250
470 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 212
190
275
220
205
3300
5200
1900
6700
2500
1350
2600
6850 | 12
10
31
20
10
190
210
370
240
0
170
340
420
450 | 4480
4995
5016
3922
3372
36880
59508
21563
60787
47386
16147
10369
18712
15472
30386 | 0
0
0
0
0
0
0
0
0
0
0
0
0 | 1σ (ir
1 SE (ir
prop. 2 SE
5928
6353
7689
5615
6928
95308
165991
51211
181952
213873
76003
45146
86948
83252
198497
1σ (ir
prop. 2 SE | mean: nternal): iternal]: 281 191 725 510 234 2223 4467 10209 6296 2808 0 1627 9040 9826 11964 mean: nternal]: iternal]: | 0.216 0.101 0.028 and ext 0.217 0.316 0.218 0.273 0.220 0.212 0.173 0.200 0.115 0.100 0.185 0.146 0.069 0.181 0.069 0.069 0.017 and ext | 0.073 0.020 ternal): n: 0.430 0.395 0.390 0.259 0.260 0.244 0.181 0.175 0.183 0.143 0.126 0.265 0.103 0.027 ternal): n: 0.496 | 51
14
40
3344
369
382
403
463
509
514
521
531
579
582
601
609
617
625
510
93
24
55
15 | | BU13-125A_spot2
BU13-125A_spot6
BU13-125A_spot6
BU13-125A_spot1
BU13-125A_spot11
BU13-125A_spot11
BU13-125A_spot15
BU13-125A_spot16
BU13-125A_spot16
BU13-125A_spot18
BU13-125A_spot10
BU13-125A_spot10
BU13-125A_spot10 | 1361
1354
1355
1355
1356
1356
1355
1356
1355
1356
1357
1360
1356 | 1540
1540
1540
1540
1540
1540
1540
1540 | 1583
1584
1582
1583
1583
1582
1581
1581
1581
1581
1582
1582
1582 | 1614
1625
1613
1617
1622
1621
1619
1622
1619
1623
1615
1617
1610 | 62
53
55
43
55
40
45
40
48
43
51
39
36
39
44 | 75
75
75
75
75
75
75
75
75
75
75
75
75
7 | 24
24
24
23
19
21
19
21
20
22
22
22
20
19 | 18
22
24
22
11
20
30
16
11
16
9
25
22
25 | 60
60
60
45
700
900
380
1000
750
250
250
380
270
470 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 212
190
275
220
3300
5200
1900
5700
6700
2500
1350
2600
2650
6850 | 12
10
31
20
10
190
210
320
370
240
0
170
340
420
450 | 4480
4995
5016
3922
3372
36880
59508
21563
60787
47386
16147
10369
18712
15472
30386 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 10 (ir
1 SE (ir
prop. 2 SE
5928
6353
7689
5615
6928
95308
165991
51211
181952
213873
76003
45146
86948
83252
198497
10 (ir
1 SE (ir
prop. 2 SE | mean: nternal): (internal): (internal): 281 191 725 510 234 2223 4467 10209 6296 2808 0 1627 9040 9826 11964 mean: nternal): (internal): (internal): 9146 957 | 0.216 0.101 0.028 and ext 0.217 0.316 0.218 0.273 0.200 0.212 0.173 0.200 0.115 0.100 0.185 0.146 0.102 0.069 0.181 0.065 0.017 and ext | 0.073 0.020 ternal): n: 0.430 0.433 0.395 0.390 0.274 0.259 0.260 0.244 0.181 0.175 0.181 0.163 0.143 0.027 ternal): 0.265 0.030 0.027 ternal): 0.466 0.467 | 51
14
40
13
384
4369
382
403
509
514
521
531
609
617
625
5510
93
24
55
51
51
51
51
51
51
51
51
51
51
51
51 | | BU13-125A_spot2
BU13-125A_spot6
BU13-125A_spot6
BU13-125A_spot1
BU13-125A_spot11
BU13-125A_spot11
BU13-125A_spot15
BU13-125A_spot16
BU13-125A_spot16
BU13-125A_spot16
BU13-125A_spot10
BU13-125A_spot10
BU13-125A_spot10
BU13-125A_spot10 |
1361
1354
1355
1352
1356
1355
1355
1355
1356
1357
1360
1356 | 1540
1540
1540
1540
1540
1540
1540
1540 | 1583
1584
1582
1583
1582
1582
1582
1581
1581
1581
1581
1582
1582 | 1614
1625
1613
1617
1622
1621
1619
1623
1615
1617
1610 | 62
53
55
43
40
45
40
48
43
51
39
36
39
44 | 75
75
75
75
75
75
75
75
75
75
75
75
75
7 | 24
24
24
23
19
21
19
21
20
22
22
20
19 | 18
22
24
22
11
20
30
16
11
16
9
25
22
25 | 60
60
60
45
700
900
380
1000
750
250
250
380
270
470 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 212
190
275
220
3300
5200
1900
5700
6700
2500
1350
2600
2650
6850 | 12
10
31
20
10
190
210
320
370
240
0
170
340
420
450 | 4480
4995
5016
3922
3372
36880
59508
21563
60787
47386
16147
10369
18712
15472
30386 | 0
0
0
0
0
0
0
0
0
0
0
0
0 | 10 (ir
1 5E (ir
prop. 2 SE
5928
6353
7689
5615
6928
95308
165991
51211
181952
213873
76003
45146
86948
83252
198497
10 (ir
prop. 2 SE | mean: nternal): (internal): (i | 0.216 0.101 0.028 and ext 0.217 0.316 0.218 0.273 0.200 0.212 0.173 0.200 0.175 0.110 0.100 0.185 0.146 0.009 0.081 0.065 0.017 and ext | 0.073 0.020 ternal): n: 0.430 0.433 0.395 0.390 0.274 0.259 0.260 0.244 0.181 0.163 0.143 0.126 0.103 0.027 ternal): n: 0.496 0.496 0.496 | 51
14
40
13
384
433
463
463
5509
514
521
531
579
601
609
617
625
510
93
24
55
15
347
379
396 | | BU13-125A_spot2 BU13-125A_spot6 BU13-125A_spot6 BU13-125A_spot1 BU13-125A_spot11 BU13-125A_spot11 BU13-125A_spot15 BU13-125A_spot16 BU13-125A_spot16 BU13-125A_spot16 BU13-125A_spot16 BU13-125A_spot10 BU13-125A_spot10 BU13-125A_spot14 BU13-125A_spot14 BU13-125A_spot16 BU13-129_spot10 | 1361
1354
1355
1352
1356
1356
1355
1355
1355
1356
1357
1360
1356 | 1540
1540
1540
1540
1540
1540
1540
1540 | 1583
1584
1582
1583
1583
1582
1582
1581
1581
1581
1581
1582
1582 | 1614
1625
1613
1617
1621
1619
1622
1619
1623
1615
1617
1610 | 62
53
55
43
40
45
40
48
43
39
36
39
44 | 75
75
75
75
75
75
75
75
75
75
75
75
75
7 | 24
24
24
23
19
21
19
21
20
22
22
20
19 | 18
22
24
22
11
20
30
16
11
16
9
25
22
25 | 60
60
60
45
700
900
380
1000
750
250
380
270
470 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 212
190
275
220
205
3300
5200
1900
5700
6700
2500
2500
2650
6850 | 12
10
31
20
190
210
320
370
240
0
170
340
420
450 | 4480
4995
5016
3922
3372
36880
59508
21563
60787
47386
16147
10369
18712
15472
30386 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 16 (ir
1 5E (ir
prop. 2 SE
5928
6353
7689
5615
6928
95308
165991
51211
181952
213873
76003
45146
86948
83252
198497
16 (ir
prop. 2 SE | mean: nternal): (internal): (i | 0.216 0.101 0.028 and ext 0.217 0.316 0.218 0.273 0.200 0.175 0.112 0.100 0.185 0.146 0.102 0.065 0.017 and ext | 0.073 0.020 ternall; 0.430 0.433 0.395 0.390 0.274 0.259 0.260 0.244 0.181 0.175 0.181 0.163 0.143 0.126 0.265 0.207 ternall; 0.0496 0.496 0.496 | 51
14
40
3344
369
382
403
463
5509
514
521
531
579
601
609
617
625
510
93
24
55
15 | | BU13-125A_spot2 BU13-125A_spot6 BU13-125A_spot3 BU13-125A_spot1 BU13-125A_spot11 BU13-125A_spot15 BU13-125A_spot15 BU13-125A_spot16 BU13-125A_spot16 BU13-125A_spot18 BU13-125A_spot18 BU13-125A_spot18 BU13-125A_spot10 BU13-125A_spot14 BU13-125A_spot14 BU13-125A_spot5 BU13-129_spot15 BU13-129_spot5 BU13-129_spot5 BU13-129_spot15 BU13-129_spot10 | 1361
1354
1354
1355
1352
1356
1356
1355
1355
1357
1360
1356 | 1540
1540
1540
1540
1540
1540
1540
1540 | 1583
1584
1582
1583
1583
1582
1582
1581
1581
1581
1582
1582
1581
1582
1581
1582
1581 | 1614
1625
1613
1617
1622
1619
1622
1619
1623
1615
1617
1610 | 62
53
55
43
51
40
45
40
48
43
36
39
44 | 75
75
75
75
75
75
75
75
75
75
75
75
75
7 | 24
24
24
23
19
21
19
21
20
22
22
22
20
19 | 18
22
24
22
11
20
30
16
11
16
9
25
22
25 | 60
60
60
45
700
900
380
1000
750
250
250
380
270
470 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 212
190
275
220
205
3300
5200
1900
5700
6700
2500
1350
2600
2650
6850 | 12
10
31
20
10
190
210
320
370
240
0
170
340
420
450 | 4480
4995
5016
3922
3372
36880
59508
21563
60787
47386
16147
10369
18712
15472
30386 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 16 (ir
1 SE (ir
prop. 2 SE
5928
6353
7689
5615
6928
95308
165991
51211
181952
213873
76003
45146
86948
83252
198497
16 (ir
1 SE (ir
prop. 2 SE | mean: nternal): (internal): (i | 0.216 0.101 0.028 and ext 0.217 0.316 0.218 0.219 0.173 0.200 0.175 0.112 0.100 0.185 0.146 0.102 0.069 0.181 0.065 0.017 and ext | 0.073 0.020 ternal): 0.430 0.433 0.395 0.390 0.274 0.259 0.260 0.244 0.181 0.175 0.181 0.1063 0.126 0.027 ternal): 0.047 0.0476 0.467 0.467 | 51
14
40
3344
369
382
403
463
509
514
521
531
609
617
625
510
93
24
55
15
347
379
396
421
428 | | BU13-125A_spot2
BU13-125A_spot6
BU13-125A_spot3
BU13-125A_spot4
BU13-125A_spot11
BU13-125A_spot11
BU13-125A_spot16
BU13-125A_spot16
BU13-125A_spot17
BU13-125A_spot18
BU13-125A_spot18
BU13-125A_spot19
BU13-125A_spot10
BU13-125A_spot10
BU13-129_spot10
BU13-129_spot10
BU13-129_spot10
BU13-129_spot10
BU13-129_spot10
BU13-129_spot10
BU13-129_spot10
BU13-129_spot10 | 1361
1354
1354
1355
1352
1356
1355
1357
1356
1357
1360
1356 | 1540
1540
1540
1540
1540
1540
1540
1540 | 1583
1584
1582
1583
1582
1581
1581
1581
1581
1582
1582
1581
1581 | 1614
1625
1613
1617
1622
1621
1619
1623
1615
1617
1610 | 62
53
55
43
551
40
45
40
48
43
51
39
36
39
44 | 75
75
75
75
75
75
75
75
75
75
75
75
75
7 | 24
24
24
23
19
21
19
21
20
22
22
22
20
19 | 18
22
24
22
11
20
30
16
11
16
9
25
22
25
25 | 60
60
60
45
700
900
380
1000
750
250
250
250
470
470 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 212
190
275
220
205
3300
5200
1900
6700
2500
1350
2600
6850
3650
500
400
400
4350
870 | 12
10
31
20
10
190
210
370
240
0
170
340
420
450 | 4480
4995
5016
3922
3372
36880
59508
21563
60787
47386
16147
10369
18712
15472
30386 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 1o (ir
1 SE (ir
prop. 2 SE
5928
6353
7689
5615
6928
95308
165991
51211
181952
213873
76003
45146
86948
83252
198497
1o (ir
1 SE (ir
prop. 2 SE
114668
14923
12566
237504
122993
26449 | mean: nternal): (internal 281 191 725 510 234 2223 4467 10209 6296 2808 0 1627 9040 9826 11964 mean: nternal): (internal 29146 957 1063 14889 19674 383 | 0.216 0.101 0.028 and ext 0.217 0.316 0.218 0.273 0.220 0.212 0.173 0.200 0.115 0.100 0.185 0.146 0.069 0.181 0.069 0.017 and ext | 0.073 0.020 ternal); 0.10 0.430 0.430 0.395 0.390 0.259 0.260 0.244 0.181 0.175 0.181 0.163 0.143 0.126 0.0265 0.103 0.0274 ternal); 0.181 0.496 0.467 0.446 0.467 0.446 0.467 0.446 0.405 0.292 | 51
14
40
334
463
509
514
521
531
579
582
601
602
601
625
510
93
24
55
15
347
379
396
421
421
428
495 | | BU13-125A_spot2 BU13-125A_spot6 BU13-125A_spot6 BU13-125A_spot8 BU13-125A_spot1 BU13-125A_spot11 BU13-125A_spot11 BU13-125A_spot15 BU13-125A_spot16 BU13-125A_spot17 BU13-125A_spot18 BU13-125A_spot18 BU13-125A_spot10 BU13-125A_spot10 BU13-125A_spot10 BU13-129_spot10 BU13-129_spot5 BU13-129_spot5 BU13-129_spot5 BU13-129_spot15 BU13-129_spot3 BU13-129_spot3 BU13-129_spot3 | 1361
1354
1355
1355
1356
1355
1355
1356
1355
1356
1356 | 1540
1540
1540
1540
1540
1540
1540
1540 | 1583
1584
1582
1583
1582
1582
1581
1581
1581
1582
1582
1581
1581 | 1614
1625
1613
1617
1612
1621
1619
1623
1615
1617
1610 |
62
53
55
43
55
40
45
40
48
43
51
39
36
39
44
44
42
40
48
48
49
40
40
40
40
40
40
40
40
40
40
40
40
40 | 75
75
75
75
75
75
75
75
75
75
75
75
75
7 | 24
24
24
23
19
21
19
21
22
22
22
20
19
20
19
20
18
18 | 18
22
24
22
11
20
30
16
9
25
22
25
20
18
25
20
10
10
10
10
11
11
11
12
12
13
14
14
15
16
16
16
16
16
16
16
16
16
16
16
16
16 | 60
60
60
45
700
900
380
1000
750
250
250
380
270
470 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 212
190
275
220
3300
5200
1900
5700
6700
2500
1350
2600
2650
6850
3650
500
400
8400
4350
870
8400 | 12
10
31
20
10
190
210
320
370
240
0
170
340
420
450 | 4480
4995
5016
3922
3372
36880
59508
21563
60787
47386
16147
10369
18712
15472
30386 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 16 (ir
1 5E (ir
prop. 2 SE
6353
7689
5615
6928
95308
165991
51211
181952
213873
76003
45146
86948
83252
198497
16 (ir
1 SE (ir
prop. 2 SE
114668
14923
12566
237504 | mean: nternal): (internal): (i | 0.216 0.101 0.028 and ext 0.217 0.316 0.218 0.273 0.200 0.175 0.100 0.185 0.146 0.102 0.069 0.181 0.065 0.017 and ext | 0.073 0.020 ternal): 0.430 0.433 0.395 0.390 0.274 0.259 0.260 0.244 0.181 0.163 0.143 0.126 0.103 0.027 ternal): 0.665 0.103 0.027 ternal): 0.466 0.467 0.446 0.394 0.405 0.405 0.405 | 51
14
40
13
384
403
382
403
509
514
521
531
609
617
625
5510
93
24
55
15
347
379
396
421
428
495
544 | | BU13-125A_spot2 BU13-125A_spot6 BU13-125A_spot6 BU13-125A_spot6 BU13-125A_spot1 BU13-125A_spot11 BU13-125A_spot11 BU13-125A_spot15 BU13-125A_spot16 BU13-125A_spot17 BU13-125A_spot18 BU13-125A_spot18 BU13-125A_spot18 BU13-125A_spot10 BU13-125A_spot10 BU13-129_spot10 BU13-129_spot5 BU13-129_spot15 BU13-129_spot10 BU13-129_spot17 BU13-129_spot17 BU13-129_spot11 | 1361
1354
1355
1352
1356
1355
1355
1355
1356
1357
1360
1356
1350
1350
1351
1354 | 1540
1540
1540
1540
1540
1540
1540
1540 | 1583
1584
1582
1583
1582
1582
1581
1581
1581
1581
1581
1581 | 1614
1625
1613
1617
1622
1621
1619
1623
1615
1617
1610 | 62
53
55
43
40
45
40
48
43
51
39
36
39
44
44
42
40
38
42
41
65 | 75
75
75
75
75
75
75
75
75
75
75
75
75
7 | 24
24
24
23
19
21
19
21
20
22
22
20
19
20
18
18
18
18 | 18
22
24
22
11
20
30
16
11
11
16
9
25
22
25
25 | 1800
250
190
300
1000
750
250
380
270
470 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 212
190
275
220
3300
5200
1900
6700
2500
1350
2600
2650
6850
3650
500
400
8400
4350
870
8400
4000 | 12
10
31
20
10
190
210
320
370
240
0
170
340
420
450 | 4480
4995
5016
3922
3372
36880
59508
21563
60787
47386
16147
10369
18712
15472
30386 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 10 (ir
1 5E (ir
prop. 2 SE
5928
6353
7689
5615
6928
95308
165991
51211
181952
213873
76003
45146
86948
83252
198497
10 (ir
1 SE (ir
prop. 2 SE
114668
14923
12566
237504
12293
26449
237504
113097 | mean: nternal): (internal): (i | 0.216 0.101 0.028 and ext 0.217 0.316 0.218 0.273 0.200 0.173 0.200 0.175 0.110 0.100 0.185 0.017 and ext 0.493 0.500 0.475 0.357 0.430 0.230 0.230 0.230 0.155 0.068 | 0.073 0.020 ternal): n: 0.430 0.433 0.395 0.390 0.274 0.259 0.260 0.244 0.181 0.163 0.143 0.126 0.103 0.027 ternal): n: 0.467 0.496 0.467 0.496 0.406 0.394 0.405 0.394 0.405 0.226 0.183 | 51
14
40
13
384
463
5509
514
521
531
579
601
609
617
625
510
93
24
55
15
347
379
396
421
428
495
544
563 | | BU13-125A_spot2 BU13-125A_spot6 BU13-125A_spot6 BU13-125A_spot4 BU13-125A_spot11 BU13-125A_spot11 BU13-125A_spot15 BU13-125A_spot15 BU13-125A_spot16 BU13-125A_spot16 BU13-125A_spot16 BU13-125A_spot16 BU13-125A_spot10 BU13-125A_spot10 BU13-125A_spot10 BU13-129_spot10 BU13-129_spot10 BU13-129_spot15 BU13-129_spot15 BU13-129_spot15 BU13-129_spot17 BU13-129_spot11 BU13-129_spot11 BU13-129_spot11 | 1361
1354
1355
1352
1356
1355
1355
1355
1357
1360
1356
1357
1360
1350
1351
1354
1350
1354
1353 | 1540
1540
1540
1540
1540
1540
1540
1540 | 1583
1584
1582
1583
1583
1583
1582
1582
1581
1581
1581
1581
1582
1581
1582
1581
1582
1582 | 1614
1625
1613
1617
1621
1619
1623
1619
1623
1615
1610
1623
1620
1617
1621
1623
1620
1621
1623
1622
1623
1623
1623
1620 | 62
53
55
43
40
45
40
48
43
36
39
44
44
42
40
38
42
41
65
42 | 75
75
75
75
75
75
75
75
75
75
75
75
75
7 | 24
24
24
23
19
21
19
21
22
20
22
22
20
19
20
19
20
18
18
18
20
18
18
18
18 | 18
22
24
22
11
20
30
16
11
16
9
25
22
25
20
10
12
12 | 60
60
60
45
700
900
380
1000
750
250
250
380
270
470 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 212
190
275
220
3300
5200
1900
5700
6700
2500
2500
2650
6850
3650
500
400
8400
4350
870
8400
4400
450 | 12
10
31
20
10
190
210
320
370
240
0
170
340
420
450 | 4480
4995
5016
3922
3372
36880
59508
21563
60787
47386
16147
10369
18712
15472
30386 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 1σ (ir
1 5E (ir
prop. 2 SE
6353
7689
5615
6928
95308
165991
51211
181952
213873
76003
45146
86948
83252
198497
1σ (ir
prop. 2 SE
114668
14923
12566
237504
122993
26449
237504
113097
12723 | mean: nternal): (internal): (i | 0.216 0.101 0.028 and ext 0.217 0.316 0.218 0.273 0.200 0.173 0.200 0.175 0.112 0.100 0.185 0.146 0.102 0.065 0.017 and ext | 0.073 0.020 ternall; 0.430 0.433 0.395 0.390 0.204 0.259 0.260 0.244 0.181 0.175 0.181 0.163 0.126 0.265 0.260 0.244 0.265 0.246 0.381 0.027 ternall; 0.496 0.496 0.496 0.496 0.496 0.496 0.292 0.226 0.226 0.183 0.177 | 51
14
40
3344
369
382
403
463
5509
514
521
531
579
601
609
617
625
510
93
24
55
15
347
379
396
421
428
495
544
4563
583 | | BU13-125A_spot2 BU13-125A_spot6 BU13-125A_spot6 BU13-125A_spot1 BU13-125A_spot1 BU13-125A_spot11 BU13-125A_spot15 BU13-125A_spot15 BU13-125A_spot16 BU13-125A_spot16 BU13-125A_spot16 BU13-125A_spot16 BU13-125A_spot10 BU13-125A_spot10 BU13-125A_spot10 BU13-129_spot10 BU13-129_spot10 BU13-129_spot15 BU13-129_spot10 BU13-129_spot10 BU13-129_spot11 BU13-129_spot11 BU13-129_spot11 BU13-129_spot11 BU13-129_spot11 BU13-129_spot4 BU13-129_spot4 | 1361
1354
1355
1352
1356
1356
1355
1355
1355
1356
1357
1360
1351
1350
1351
1350
1351
1354
1350
1353
1354
1350 | 1540
1540
1540
1540
1540
1540
1540
1540 | 1583
1584
1582
1583
1583
1582
1582
1581
1581
1581
1582
1581
1581 | 1614
1625
1613
1617
1621
1619
1622
1619
1623
1615
1617
1620
1623
1622
1623
1622
1623
1623
1622
1623
1623 | 62
53
55
43
40
45
40
48
43
36
39
44
44
42
40
38
42
41
65
42
40 | 75
75
75
75
75
75
75
75
75
75
75
75
75
7 | 24
24
24
23
19
21
19
21
20
22
22
20
19
20
19
20
18
18
20
18
18
18
18
18 | 18
22
24
22
11
20
30
16
11
16
9
25
22
25
20
10
12
12
12
10 | 1800
250
190
1870
250
380
270
470 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 212
190
275
220
205
3300
5200
1900
5700
6700
2500
1350
2600
2650
6850
3650
500
400
8400
4350
870
8400
4000
4000
4000
9100 | 12
10
31
20
190
210
320
370
240
0
170
340
420
450
450 | 4480
4995
5016
3922
3372
36880
59508
21563
60787
47386
16147
10369
18712
15472
30386 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 16 (ir
1 5E (ir
prop. 2 SE
6353
7689
5615
6928
95308
165991
51211
181952
213873
76003
45146
86948
83252
198497
16 (ir
prop. 2
SE
114668
14923
12566
237504
122993
26449
237504
113097
12723
248986 | mean: nternal): (internal): (internal): (internal): (internal): 281 191 725 510 234 4467 10209 6296 2808 0 1627 9040 9826 11964 mean: nternal): (internal): (internal): (internal): 14889 19674 383 2680 2233 128 1489 | 0.216 0.101 0.028 and ext 0.217 0.316 0.218 0.219 0.210 0.173 0.200 0.175 0.112 0.100 0.185 0.146 0.102 0.069 0.181 0.065 0.017 and ext | 0.073 0.020 ternal): 0.430 0.433 0.395 0.390 0.259 0.260 0.244 0.181 0.175 0.181 0.163 0.143 0.126 0.265 0.027 ternal): 0.496 0.467 0.497 0.496 0.497 0.496 0.497 0.491 0.491 | 51
14
40
3344
369
382
403
463
559
514
521
531
579
6601
609
617
625
510
93
24
55
15
347
379
396
421
428
495
544
553
369
514
515
515
515
516
517
517
518
518
518
518
518
518
518
518
518
518 | | BU13-125A_spot2
BU13-125A_spot6
BU13-125A_spot8
BU13-125A_spot1
BU13-125A_spot11
BU13-125A_spot11
BU13-125A_spot17
BU13-125A_spot16
BU13-125A_spot18
BU13-125A_spot18
BU13-125A_spot19
BU13-125A_spot10
BU13-125A_spot10
BU13-125A_spot10
BU13-129_spot10
BU13-129_spot10
BU13-129_spot15
BU13-129_spot15
BU13-129_spot11
BU13-129_spot11
BU13-129_spot11
BU13-129_spot11
BU13-129_spot11
BU13-129_spot18
BU13-129_spot11 | 1361
1354
1354
1355
1352
1356
1355
1355
1357
1360
1356
1356
1356
1357
1350
1350
1350
1351
1354
1350
1356
1356 | 1540
1540
1540
1540
1540
1540
1540
1540 | 1583
1584
1582
1583
1582
1581
1581
1581
1581
1582
1581
1581 | 1614
1625
1613
1617
1612
1621
1619
1623
1615
1610
1623
1615
1620
1617
1620
1617
1621
1623
1622
1621
1623
1623
1633
1645
1640
1641 | 62
53
55
43
551
40
45
40
48
43
51
39
36
39
44
44
42
40
38
42
41
65
40
40
40
40
40
40
40
40
40
40
40
40
40 | 75
75
75
75
75
75
75
75
75
75
75
75
75
7 | 24
24
24
23
19
21
19
21
20
22
22
22
20
19
20
18
18
18
20
18
18
18
18
15 | 18
22
24
22
11
20
30
16
11
16
9
25
22
25
20
10
12
12
30
10
11
11
11
11
11
11
11
11
11
11
11
11 | 1800
250
1900
1870
250
250
250
380
270
470 | 30
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 212
190
275
220
205
3300
5200
1900
6700
2500
1350
2600
6850
3650
500
400
4350
870
8400
4350
870
8400
450
9100
4700 | 12
10
31
20
10
190
210
370
240
0
170
340
420
450
450
50
40
700
1850
30
210
70
10
10
10
10
10
10
10
10
10
10
10
10
10 | 4480
4995
5016
3922
3372
36880
59508
21563
60787
47386
16147
10369
18712
15472
30386 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 1o (ir
1 SE (ir
prop. 2 SE
5928
6353
7689
5615
6928
95308
165991
51211
181952
213873
76003
45146
86948
83252
198497
1o (ir
1 SE (ir
prop. 2 SE
114668
14923
12566
237504
122993
26449
237504
113097
12723
248986
110741 | mean: nternal): (internal 281 191 725 510 234 2223 4467 10209 6296 2808 0 1627 9040 9826 11964 mean: nternal): (internal 29146 957 1063 14889 19674 383 2680 2233 128 1489 4881 | 0.216 0.101 0.028 dand exid 0.217 0.316 0.218 0.273 0.220 0.212 0.173 0.200 0.115 0.100 0.185 0.146 0.069 0.181 0.069 0.181 0.069 0.017 dand exid | 0.073 0.020 ternal): 0.430 0.433 0.395 0.390 0.259 0.260 0.244 0.181 0.175 0.181 0.163 0.143 0.126 0.065 0.027 ternal): 0.496 0.467 0.404 0.405 0.292 0.226 0.130 0.037 | 51
14
40
3344
369
382
403
463
551
579
582
601
601
602
617
625
510
93
24
55
15
347
379
347
379
421
428
495
544
553
369
47
48
48
48
48
48
48
48
48
48
48
48
48
48 | | BU13-125A_spot2 BU13-125A_spot6 BU13-125A_spot6 BU13-125A_spot1 BU13-125A_spot1 BU13-125A_spot11 BU13-125A_spot15 BU13-125A_spot15 BU13-125A_spot16 BU13-125A_spot16 BU13-125A_spot16 BU13-125A_spot16 BU13-125A_spot10 BU13-125A_spot10 BU13-125A_spot10 BU13-129_spot10 BU13-129_spot10 BU13-129_spot15 BU13-129_spot10 BU13-129_spot10 BU13-129_spot11 BU13-129_spot11 BU13-129_spot11 BU13-129_spot11 BU13-129_spot11 BU13-129_spot4 BU13-129_spot4 | 1361
1354
1355
1352
1356
1355
1355
1355
1356
1357
1360
1351
1350
1351
1354
1350
1351
1354
1350
1353
1354
1350 | 1540
1540
1540
1540
1540
1540
1540
1540 | 1583
1584
1582
1583
1583
1582
1582
1581
1581
1581
1582
1581
1581 | 1614
1625
1613
1617
1612
1619
1622
1619
1623
1615
1617
1610 | 62
53
55
43
40
45
40
48
43
36
39
44
44
42
40
38
42
41
65
42
40 | 75
75
75
75
75
75
75
75
75
75
75
75
75
7 | 24
24
24
23
19
21
19
21
20
22
22
20
19
20
19
20
18
18
20
18
18
18
18
18 | 18
22
24
22
11
20
30
16
11
16
9
25
22
25
20
10
12
12
12
10 | 1800
250
190
1870
250
380
270
470 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 212
190
275
220
205
3300
5200
1900
5700
6700
2500
1350
2600
2650
6850
3650
500
400
8400
4350
870
8400
4000
4000
4000
9100 | 12
10
31
20
190
210
320
370
240
0
170
340
420
450
450 | 4480
4995
5016
3922
3372
36880
59508
21563
60787
47386
16147
10369
18712
15472
30386 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 16 (ir
1 5E (ir
prop. 2 SE
6353
7689
5615
6928
95308
165991
51211
181952
213873
76003
45146
86948
83252
198497
16 (ir
prop. 2 SE
114668
14923
12566
237504
122993
26449
237504
113097
12723
248986 | mean: nternal): (internal): (internal): (internal): (internal): 281 191 725 510 234 4467 10209 6296 2808 0 1627 9040 9826 11964 mean: nternal): (internal): (internal): (internal): 14889 19674 383 2680 2233 128 1489 | 0.216 0.101 0.028 and ext 0.217 0.316 0.218 0.273 0.200 0.175 0.100 0.185 0.146 0.102 0.069 0.181 0.065 0.017 and ext | 0.073 0.020 ternal): 0.430 0.433 0.395 0.390 0.259 0.260 0.244 0.181 0.175 0.181 0.163 0.143 0.126 0.265 0.027 ternal): 0.496 0.467 0.497 0.496 0.497 0.496 0.497 0.491 0.491 | 51
14
40
3369
382
403
463
5509
514
521
531
579
582
601
609
617
625
510
93
24
55
15
347
379
396
421
428
495
544
553
369
514
453
453
453
453
453
453
453
453
453
45 | | | | | | | | | | | | | | | | | | mean:
nternal):
nternal): | 0.232
0.184
0.051 | 0.267
0.150
0.042 | 51
11
31 | |--|--|--
--|--|--|--|--|--|---|---|---|---|---|---|---|--|--|--|--| | | | | | | | | | | | | | | | | prop. 2 SE | | | | 67 | | | | | | 9.5 | , | | | , | | | | | | | 2 32 | 20. | | n: | 13 | | BU13-130A_spot16 | 1351 | 1540 | 1582 | 1619 | 70 | 80 | 19 | 23 | 800 | 150 | 3850 | 980 | 79442 | 12762 | 114904 | 23971 | 0.208 | 0.364 | 41 | | BU13-130A_spot13 | 1350 | 1540 | 1581 | 1612 | 52 | 100 | 18 | 28 | 2350 | 0 | 10700 | 1000 | 173353 | 0 | 302535 | 29777 | 0.220 | 0.343 | 43 | | 3U13-130A_spot12 | 1350 | 1540 | 1577 | 1612 | 59 | 100 | 23 | 24 | 800 | 0 | 3650 | 450 | 62169 | 0 | 131868 | 11486 | 0.219 | 0.302 | 48 | | BU13-130A_spot17 | 1349 | 1540 | 1582 | 1620 | 60 | 80 | 18 | 17 | 650 | 0 | 8500 | 250 | 59282 | 0 | 240332 | 4520 | 0.076 | 0.195 | 55 | | BU13-130A_spot6 | 1339 | 1520 | 1580 | 1618 | 55 | 80 | 18 | 16 | 57 | 0 | 680 | 30 | 4129 | 0 | 19227 | 510 | 0.084 | 0.173 | 57 | | BU13-130A_spot4 | 1344 | 1520 | 1580 | 1616 | 60 | 80 | 15 | 14 | 45 | 0 | 730 | 40 | 3419 | 0 | 17200 | 596 | 0.062 | 0.161 | 58 | | BU13-130A_spot2 | 1350 | 1520
1550 | 1580
1582 | 1620
1608 | 55
35 | 80
70 | 18
21 | 15
24 | 33
300 | 0 | 470
3100 | 15
550 | 2299 | 0 | 13289
89048 | 239
14038 | 0.070
0.097 | 0.145
0.138 | 62 | | BU13-130A_spot18
BU13-130A_spot3 | 1350
1350 | 1520 | 1582 | 1618 | 50 | 80 | 16 | 15 | 31 | 0 | 610 | 15 | 16493
1963 | 0 | 15331 | 239 | 0.057 | 0.138 | 63 | | BU13-130A_spot15 | 1355 | 1540 | 1581 | 1612 | 55 | 100 | 15 | 28 | 125 | 0 | 10000 | 0 | 9753 | 0 | 235619 | 0 | 0.031 | 0.040 | 69 | | 5015 150. (_spot15 | 1000 | 25 10 | 1501 | 1011 | - | 200 | 10 | 20 | 123 | | 10000 | | 3,33 | | 200015 | mean: | 0.110 | 0.197 | 56 | | | | | | | | | | | | | | | | | 1σ (ir | nternal): | 0.072 | 0.100 | 8 | | | | | | | | | | | | | | | | | 1 SE (ir | nternal): | 0.023 | 0.032 | 2 | | | | | | | | | | | | | | | | 1 | prop. 2 SE | (internal | and ext | ternal): | 6 | n: | 1 | | BU13-131B_spot20 | 1350 | 1550 | 1583 | 1623 | 41 | 70 | 16 | 16 | 470 | 0 | 2530 | 100 | 27336 | 0 | 63586 | 1702 | 0.186 | 0.295 | 47 | | BU13-131B_spot7 | 1352 | 1540 | 1582 | 1622 | 38 | 80 | 19 | 13 | 1700 | 0 | 4500 | 230 | 68700 | 0 | 128664 | 3180 | 0.378 | 0.343 | 48 | | BU13-131B_spot13 | 1351 | 1520 | 1582 | 1622 | 51 | 70 | 22 | 13 | 700 | 20 | 3000 | 200 | 47022 | 1489 | 103673 | 2765 | 0.233 | 0.306 | 48 | | BU13-131B_spot5 | 1355 | 1540 | 1581 | 1615 | 65 | 80 | 20 | 18 | 15 | 0 | 115 | 6 | 1185 | 1480 | 3613 | 115 | 0.130 | 0.241 | 52 | | BU13-131B_spot14 | 1356 | 1520 | 1582 | 1620
1622 | 45 | 70
70 | 18 | 14 | 300 | 20 | 2400 | 380 | 17096 | 1489 | 65667 | 5658 | 0.125
0.094 | 0.193 | 5 | | BU13-131B_spot19 | 1350
1358 | 1550
1520 | 1583
1583 | 1622 | 41
40 | 70 | 16
19 | 18
14 | 250
220 | 0 | 2670
2100 | 40
450 | 15061
11591 | 0 | 67104
62675 | 766
6700 | 0.094 | 0.182
0.143 | 6: | | BU13-131B_spot15
BU13-131B_spot18 | 1358 | 1550 | 1583 | 1610 | 40 | 70 | 15 | 50 | 135 | 0 | 3150 | 0 | 8482 | 0 | 74220 | 0 | 0.105 | 0.143 | 6 | | BU13-131B_spot3 | 1354 | 1540 | 1581 | 1624 | 50 | 80 | 16 | 10 | 5 | 0 | 100 | 0 | 266 | 0 | 2270 | 0 | 0.043 | 0.105 | 6 | | BU13-131B_spot16 | 1357 | 1530 | 1581 | 1618 | 60 | 80 | 18 | 14 | 130 | 30 | 3950 | 50 | 10274 | 2552 | 111684 | 744 | 0.033 | 0.084 | 6 | | 3U13-131B_spot23 | 1355 | 1550 | 1583 | 1623 | 35 | 70 | 14 | 16 | 95 | 0 | 2770 | 0 | 4886 | 0 | 58948 | 0 | 0.034 | 0.077 | 6 | | BU13-131B_spot17 | 1358 | 1530 | 1582 | 1620 | 60 | 80 | 15 | 14 | 90 | 30 | 4350 | 100 | 7113 | 2552 | 102494 | 1489 | 0.021 | 0.064 | 6 | | SU13-131B_spot22 | 1353 | 1550 | 1584 | 1623 | 39 | 70 | 14 | 16 | 45 | 0 | 3100 | 0 | 2490 | 0 | 68173 | 0 | 0.015 | 0.035 | 7 | | BU13-131B_spot24 | 1355 | 1550 | 1583 | 1623 | 39 | 70 | 15 | 16 | 40 | 0 | 2900 | 0 | 2292 | 0 | 66123 | 0 | 0.014 | 0.034 | 70 | | 3U13-131B_spot21 | 1350 | 1550 | 1583 | 1623 | 41 | 70 | 15 | 16 | 10 | 0 | 2870 | 0 | 582 | 0 | 67623 | 0 | 0.003 | 0.009 | 7: | | | | | | | | | | | | | | | | | | mean: | 0.098 | 0.148 | 6: | | | | | | | | | | | | | | | | | 1σ (ir | ternal): | 0.100 | 0.104 | 8 | | | | | | | | | | | | | | | | | | nternal): | 0.026 | 0.027 | 2 | | | | | | | | | | | | | | | | - 1 | prop. 2 SE | (internal | and ext | ternal): | 50 | BII14-74A spot10 | 1355 | 1530 | 1595 | 1621 | 38 | 80 | 23 | 16 | 3600 | 0 | 5000 | 1600 | 201005 | 0 | 168973 | 27225 | | n: | _ | | BU14-74A_spot10 | 1355 | 1530
1530 | 1585
1584 | 1621 | 38 | 80 | 23 | 16
16 | 3600 | 0 | 5000 | 1600 | 201005 | 0 | 168973
152076 | 27225 | 0.720 | 0.506 | 38 | | BU14-74A_spot11 | 1355 | 1530 | 1584 | 1621 | 40 | 80 | 23 | 16 | 2800 | 0 | 4500 | 1200 | 158883 | 0 | 152076 | 20419 | 0.720
0.622 | 0.506
0.479 | 38 | | BU14-74A_spot11
BU14-74A_spot8 | 1355
1354 | 1530
1530 | 1584
1584 | 1621
1621 | 40
40 | 80
80 | 23
23 | 16
17 | 2800
3300 | 0
0 | 4500
6700 | 1200
1500 | 158883
187255 | 0 | 152076
218606 | 20419
27119 | 0.720
0.622
0.493 | 0.506
0.479
0.432 | 38
39
43 | | BU14-74A_spot11
BU14-74A_spot8
BU14-74A_spot6 | 1355 | 1530 | 1584 | 1621 | 40 | 80 | 23 | 16 | 2800 | 0 | 4500 | 1200 | 158883 | 0 | 152076 | 20419 | 0.720
0.622 | 0.506
0.479 | 38
39
41
41 | | BU14-74A_spot11
BU14-74A_spot8 | 1355
1354
1353 | 1530
1530
1530 | 1584
1584
1584 | 1621
1621
1623 | 40
40
41 | 80
80
80 | 23
23
27 | 16
17
19 | 2800
3300
1750 | 0
0
0 | 4500
6700
2850 | 1200
1500
550 | 158883
187255
101784 | 0
0
0 | 152076
218606
109161
146825 | 20419
27119
11113 | 0.720
0.622
0.493
0.614 | 0.506
0.479
0.432
0.458 | 38
39
41
41
41 | | BU14-74A_spot11
BU14-74A_spot8
BU14-74A_spot6
BU14-74A_spot3 | 1355
1354
1353
1354 | 1530
1530
1530
1530 | 1584
1584
1584
1585 | 1621
1621
1623
1622 | 40
40
41
36 | 80
80
80 | 23
23
27
23 | 16
17
19
20 | 2800
3300
1750
2900 | 0
0
0 | 4500
6700
2850
4500 | 1200
1500
550
850 | 158883
187255
101784
142805 | 0
0
0 | 152076
218606
109161
146825 | 20419
27119
11113
18079 | 0.720
0.622
0.493
0.614
0.644 | 0.506
0.479
0.432
0.458
0.464 | 38
4:
4:
4:
4: | | BU14-74A_spot11
BU14-74A_spot8
BU14-74A_spot6
BU14-74A_spot3
BU14-74A_spot7 | 1355
1354
1353
1354
1353 | 1530
1530
1530
1530
1530 | 1584
1584
1584
1585
1585 | 1621
1621
1623
1622
1622 | 40
40
41
36
38 | 80
80
80
80 | 23
23
27
23
26 | 16
17
19
20
17 |
2800
3300
1750
2900
2650 | 0
0
0
0 | 4500
6700
2850
4500
4500 | 1200
1500
550
850
750 | 158883
187255
101784
142805
142853 | 0
0
0
0 | 152076
218606
109161
146825
165976 | 20419
27119
11113
18079
13559 | 0.720
0.622
0.493
0.614
0.644
0.589 | 0.506
0.479
0.432
0.458
0.464
0.443 | 3:
3:
4:
4:
4:
4:
4:
4: | | BU14-74A_spot11
BU14-74A_spot8
BU14-74A_spot6
BU14-74A_spot3
BU14-74A_spot7
BU14-74A_spot5 | 1355
1354
1353
1354
1353
1353 | 1530
1530
1530
1530
1530
1530 | 1584
1584
1584
1585
1585
1584 | 1621
1621
1623
1622
1622
1623 | 40
40
41
36
38
41 | 80
80
80
80
80 | 23
23
27
23
26
26 | 16
17
19
20
17 | 2800
3300
1750
2900
2650
3290 | 0
0
0
0
0 | 4500
6700
2850
4500
4500
6150 | 1200
1500
550
850
750
1050 | 158883
187255
101784
142805
142853
177668 | 0
0
0
0
0 | 152076
218606
109161
146825
165976
218722 | 20419
27119
11113
18079
13559
16750 | 0.720
0.622
0.493
0.614
0.644
0.589
0.535 | 0.506
0.479
0.432
0.458
0.464
0.443 | 3:
4
4
4
4
4.
4.
4. | | BU14-74A_spot11
BU14-74A_spot8
BU14-74A_spot6
BU14-74A_spot3
BU14-74A_spot7
BU14-74A_spot5
BU14-74A_spot1
BU14-74A_spot1 | 1355
1354
1353
1354
1353
1353 | 1530
1530
1530
1530
1530
1530
1530 | 1584
1584
1585
1585
1585
1584
1585 | 1621
1623
1622
1622
1622
1623
1622 | 40
40
41
36
38
41
39 | 80
80
80
80
80
80 | 23
23
27
23
26
26
25 | 16
17
19
20
17
15 | 2800
3300
1750
2900
2650
3290
1500 | 0
0
0
0
0
0 | 4500
6700
2850
4500
4500
6150
2300 | 1200
1500
550
850
750
1050
420 | 158883
187255
101784
142805
142853
177668
77052 | 0
0
0
0
0
0 | 152076
218606
109161
146825
165976
218722
84487 | 20419
27119
11113
18079
13559
16750
8040 | 0.720
0.622
0.493
0.614
0.644
0.589
0.535
0.652 | 0.506
0.479
0.432
0.458
0.464
0.443
0.430
0.454 | 3:
4
4
4
4
4:
4:
4:
4: | | BU14-74A_spot11
BU14-74A_spot8
BU14-74A_spot6
BU14-74A_spot7
BU14-74A_spot7
BU14-74A_spot1
BU14-74A_spot1
BU14-74A_spot1
BU14-74A_spot12
BU14-74A_spot12
BU14-74A_spot12 | 1355
1354
1353
1354
1353
1353
1354
1354 | 1530
1530
1530
1530
1530
1530
1530
1530 | 1584
1584
1585
1585
1585
1584
1585
1584
1585 | 1621
1621
1623
1622
1622
1623
1623
1623 | 40
40
41
36
38
41
39
38
40
36 | 80
80
80
80
80
80
80
80 | 23
23
27
23
26
26
25
27
23
25 | 16
17
19
20
17
15
18
20
18 | 2800
3300
1750
2900
2650
3290
1500
2400
1900 | 0
0
0
0
0
0
0 | 4500
6700
2850
4500
4500
6150
2300
3450
4400
2850 | 1200
1500
550
850
750
1050
420
640
550
510 | 158883
187255
101784
142805
142853
177668
77052
124749
107814
93562 | 0
0
0
0
0
0
0 | 152076
218606
109161
146825
165976
218722
84487
132143
148696
101075 | 20419
27119
11113
18079
13559
16750
8040
13612
10528
10847 | 0.720
0.622
0.493
0.614
0.644
0.589
0.535
0.652
0.696
0.432 | 0.506
0.479
0.432
0.458
0.464
0.443
0.430
0.454
0.461
0.404
0.455 | 3:
3:
4:
4:
4:
4:
4:
4:
4:
4:
4:
4:
4:
4:
4: | | BU14-74A_spot1
BU14-74A_spot8
BU14-74A_spot6
BU14-74A_spot3
BU14-74A_spot7
BU14-74A_spot5
BU14-74A_spot1
BU14-74A_spot1
BU14-74A_spot1
BU14-74A_spot2
BU14-74A_spot2 | 1355
1354
1353
1354
1353
1354
1354
1354 | 1530
1530
1530
1530
1530
1530
1530
1530 | 1584
1584
1585
1585
1584
1585
1585
1584
1585
1584 | 1621
1623
1622
1622
1623
1623
1623
1623 | 40
40
41
36
38
41
39
38
40
36
40 | 80
80
80
80
80
80
80
80
80 | 23
23
27
23
26
26
25
27
23
25
26 | 16
17
19
20
17
15
18
20
18
20 | 2800
3300
1750
2900
2650
3290
1500
2400
1900
1900 | 0
0
0
0
0
0
0
0 | 4500
6700
2850
4500
4500
6150
2300
3450
4400
2850
2900 | 1200
1500
550
850
750
1050
420
640
550
510 | 158883
187255
101784
142805
142853
177668
77052
124749
107814
93562
90790 | 0
0
0
0
0
0
0
0 | 152076
218606
109161
146825
165976
218722
84487
132143
148696
101075
110788 | 20419
27119
11113
18079
13559
16750
8040
13612
10528
10847
9093 | 0.720
0.622
0.493
0.614
0.644
0.589
0.535
0.652
0.696
0.432
0.667
0.552 | 0.506
0.479
0.432
0.458
0.464
0.443
0.430
0.454
0.461
0.404
0.455
0.431 | 33
34
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4 | | BU14-74A_spot1
BU14-74A_spot8
BU14-74A_spot6
BU14-74A_spot3
BU14-74A_spot7
BU14-74A_spot5
BU14-74A_spot1
BU14-74A_spot1
BU14-74A_spot1
BU14-74A_spot2
BU14-74A_spot9 | 1355
1354
1353
1354
1353
1354
1354
1354 | 1530
1530
1530
1530
1530
1530
1530
1530 | 1584
1584
1585
1585
1584
1585
1584
1585
1584
1585 | 1621
1623
1622
1622
1623
1623
1623
1623 | 40
40
41
36
38
41
39
38
40
36
40
41 | 80
80
80
80
80
80
80
80
80
80 | 23
23
27
23
26
26
25
27
23
25
26
25
25 | 16
17
19
20
17
15
18
20
18
20
19 | 2800
3300
1750
2900
2650
3290
1500
2400
1900
1600
2000 | 0
0
0
0
0
0
0
0 | 4500
6700
2850
4500
4500
6150
2300
3450
4400
2850
2900
3800 | 1200
1500
550
850
750
1050
420
640
550
510
450
700 | 158883
187255
101784
142805
142853
177668
77052
124749
107814
93562
90790
112165 | 0
0
0
0
0
0
0
0 | 152076
218606
109161
146825
165976
218722
84487
132143
148696
101075
110788
139586 | 20419
27119
11113
18079
13559
16750
8040
13612
10528
10847
9093
13400 | 0.720
0.622
0.493
0.614
0.644
0.589
0.535
0.652
0.696
0.432
0.667
0.552 | 0.506
0.479
0.432
0.458
0.464
0.443
0.430
0.454
0.461
0.404
0.455
0.431 | 33
34
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4 | | BU14-74A_spot11
BU14-74A_spot8
BU14-74A_spot6
BU14-74A_spot3
BU14-74A_spot7
BU14-74A_spot5
BU14-74A_spot1
BU14-74A_spot1
BU14-74A_spot1
BU14-74A_spot2
BU14-74A_spot9
BU14-74A_spot14
BU14-74A_spot14
BU14-74A_spot14 | 1355
1354
1353
1354
1353
1354
1354
1354 | 1530
1530
1530
1530
1530
1530
1530
1530 | 1584
1584
1585
1585
1584
1585
1584
1585
1584
1585
1584 | 1621
1623
1622
1622
1623
1622
1623
1623 | 40
40
41
36
38
41
39
38
40
36
40
41
39 | 80
80
80
80
80
80
80
80
80
80 | 23
23
27
23
26
26
25
27
23
25
26
25
27 | 16
17
19
20
17
15
18
20
18
20
19
18
20 | 2800
3300
1750
2900
2650
3290
1500
2400
1900
1900
1600
2000
2800 | 0
0
0
0
0
0
0
0 | 4500
6700
2850
4500
4500
6150
2300
3450
4400
2850
2900
3800
4500 | 1200
1500
550
850
750
1050
420
640
550
510
450
700
590 | 158883
187255
101784
142805
142853
177668
77052
124749
107814
93562
90790
112165
143831 | 0
0
0
0
0
0
0
0
0 | 152076
218606
109161
146825
165976
218722
84487
132143
148696
101075
110788
139586
172360 | 20419
27119
11113
18079
13559
16750
8040
13612
10528
10847
9093
13400
12549 | 0.720
0.622
0.493
0.614
0.644
0.589
0.535
0.652
0.696
0.432
0.667
0.552
0.526 | 0.506
0.479
0.432
0.458
0.464
0.443
0.430
0.454
0.461
0.404
0.455
0.431
0.423 | 38
39
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4.
4. | | BU14-74A_spot11
BU14-74A_spot8
BU14-74A_spot6
BU14-74A_spot3
BU14-74A_spot7
BU14-74A_spot5
BU14-74A_spot1
BU14-74A_spot1
BU14-74A_spot1
BU14-74A_spot2
BU14-74A_spot9
BU14-74A_spot14
BU14-74A_spot14
BU14-74A_spot14 | 1355
1354
1353
1354
1353
1354
1354
1354 | 1530
1530
1530
1530
1530
1530
1530
1530 | 1584
1584
1585
1585
1584
1585
1584
1585
1584
1585
1584 | 1621
1623
1622
1622
1623
1623
1623
1623 | 40
40
41
36
38
41
39
38
40
36
40
41 | 80
80
80
80
80
80
80
80
80
80 |
23
23
27
23
26
26
25
27
23
25
26
25 | 16
17
19
20
17
15
18
20
18
20
19 | 2800
3300
1750
2900
2650
3290
1500
2400
1900
1600
2000 | 0
0
0
0
0
0
0
0 | 4500
6700
2850
4500
4500
6150
2300
3450
4400
2850
2900
3800 | 1200
1500
550
850
750
1050
420
640
550
510
450
700 | 158883
187255
101784
142805
142853
177668
77052
124749
107814
93562
90790
112165 | 0
0
0
0
0
0
0
0 | 152076
218606
109161
146825
165976
218722
84487
132143
148696
101075
110788
139586 | 20419
27119
11113
18079
13559
16750
8040
13612
10528
10847
9093
13400
12549
14952 | 0.720
0.622
0.493
0.614
0.644
0.589
0.535
0.652
0.696
0.432
0.667
0.552
0.526
0.622 | 0.506
0.479
0.432
0.458
0.464
0.443
0.430
0.454
0.461
0.404
0.455
0.431
0.423
0.438 | 38
39
44
44
44
44
44
44
44
44
44
44
44
44
44 | | BU14-74A_spot11
BU14-74A_spot8
BU14-74A_spot6
BU14-74A_spot3
BU14-74A_spot7
BU14-74A_spot1
BU14-74A_spot1
BU14-74A_spot1
BU14-74A_spot12
BU14-74A_spot12
BU14-74A_spot13
BU14-74A_spot13 | 1355
1354
1353
1354
1353
1354
1354
1354 | 1530
1530
1530
1530
1530
1530
1530
1530 | 1584
1584
1585
1585
1584
1585
1584
1585
1584
1585
1584 | 1621
1623
1622
1622
1623
1622
1623
1623 | 40
40
41
36
38
41
39
38
40
36
40
41
39 | 80
80
80
80
80
80
80
80
80
80 | 23
23
27
23
26
26
25
27
23
25
26
25
27 | 16
17
19
20
17
15
18
20
18
20
19
18
20 | 2800
3300
1750
2900
2650
3290
1500
2400
1900
1900
1600
2000
2800 | 0
0
0
0
0
0
0
0 | 4500
6700
2850
4500
4500
6150
2300
3450
4400
2850
2900
3800
4500 | 1200
1500
550
850
750
1050
420
640
550
510
450
700
590 | 158883
187255
101784
142805
142853
177668
77052
124749
107814
93562
90790
112165
143831 | 0
0
0
0
0
0
0
0
0 | 152076
218606
109161
146825
165976
218722
84487
132143
148696
101075
110788
139586
172360
167207 | 20419
27119
11113
18079
13559
16750
8040
13612
10528
10847
9093
13400
12549
14952
mean: | 0.720
0.622
0.493
0.614
0.589
0.535
0.652
0.696
0.432
0.552
0.526
0.622
0.511 | 0.506
0.479
0.432
0.458
0.464
0.443
0.454
0.461
0.404
0.455
0.431
0.423
0.438
0.405
0.446 | 38
39
4:
4:
4:
4:
4:
4:
4:
4:
4:
4:
4:
4:
4: | | U14-74A_spot11 8U14-74A_spot8 8U14-74A_spot6 8U14-74A_spot7 8U14-74A_spot7 8U14-74A_spot1 8U14-74A_spot1 8U14-74A_spot1 8U14-74A_spot1 8U14-74A_spot2 8U14-74A_spot9 U14-74A_spot1 | 1355
1354
1353
1354
1353
1354
1354
1354 | 1530
1530
1530
1530
1530
1530
1530
1530 | 1584
1584
1585
1585
1584
1585
1584
1585
1584
1585
1584 | 1621
1623
1622
1622
1623
1622
1623
1623 | 40
40
41
36
38
41
39
38
40
36
40
41
39 | 80
80
80
80
80
80
80
80
80
80 | 23
23
27
23
26
26
25
27
23
25
26
25
27 | 16
17
19
20
17
15
18
20
18
20
19
18
20 | 2800
3300
1750
2900
2650
3290
1500
2400
1900
1900
1600
2000
2800 | 0
0
0
0
0
0
0
0 | 4500
6700
2850
4500
4500
6150
2300
3450
4400
2850
2900
3800
4500 | 1200
1500
550
850
750
1050
420
640
550
510
450
700
590 | 158883
187255
101784
142805
142853
177668
77052
124749
107814
93562
90790
112165
143831 | 0
0
0
0
0
0
0
0
0 | 152076
218606
109161
146825
165976
218722
84487
132143
148696
101075
110788
139586
172360
167207 | 20419
27119
11113
18079
13559
16750
8040
13612
10528
10847
9093
13400
12549
14952
mean:
hternal): | 0.720
0.622
0.493
0.614
0.589
0.535
0.652
0.696
0.432
0.552
0.526
0.622
0.511
0.592 | 0.506
0.479
0.432
0.458
0.464
0.443
0.454
0.454
0.404
0.455
0.431
0.423
0.438
0.405
0.446
0.405 | 1:
388
399
411
411
422
422
433
433
434
434
442
1: | | U14-74A_spot11 8U14-74A_spot8 8U14-74A_spot6 8U14-74A_spot7 8U14-74A_spot7 8U14-74A_spot1 8U14-74A_spot1 8U14-74A_spot1 8U14-74A_spot1 8U14-74A_spot2 8U14-74A_spot9 U14-74A_spot1 | 1355
1354
1353
1354
1353
1354
1354
1354 | 1530
1530
1530
1530
1530
1530
1530
1530 | 1584
1584
1585
1585
1584
1585
1584
1585
1584
1585
1584 | 1621
1623
1622
1622
1623
1622
1623
1623 | 40
40
41
36
38
41
39
38
40
36
40
41
39 | 80
80
80
80
80
80
80
80
80
80 | 23
23
27
23
26
26
25
27
23
25
26
25
27 | 16
17
19
20
17
15
18
20
18
20
19
18
20 | 2800
3300
1750
2900
2650
3290
1500
2400
1900
1900
1600
2000
2800 | 0
0
0
0
0
0
0
0 | 4500
6700
2850
4500
4500
6150
2300
3450
4400
2850
2900
3800
4500 | 1200
1500
550
850
750
1050
420
640
550
510
450
700
590 | 158883
187255
101784
142805
142853
177668
77052
124749
107814
93562
90790
112165
143831 | 0
0
0
0
0
0
0
0
0
0 | 152076
218606
109161
146825
165976
218722
84487
132143
148696
101075
110788
139586
172360
167207 | 20419
27119
11113
18079
13559
16750
8040
13612
10528
10847
9093
13400
12549
14952
mean:
hternal): | 0.720
0.622
0.493
0.614
0.589
0.535
0.652
0.696
0.432
0.567
0.552
0.526
0.622
0.511
0.592
0.079 | 0.506
0.479
0.432
0.458
0.464
0.443
0.454
0.454
0.404
0.455
0.431
0.423
0.423
0.405
0.405
0.406
0.405 | 38
39
41
41
41
42
42
43
43
43
43
44
44
44 | | 8U14-74A_spot11
BU14-74A_spot8
BU14-74A_spot6
BU14-74A_spot7
BU14-74A_spot7
BU14-74A_spot1
BU14-74A_spot1
BU14-74A_spot1
BU14-74A_spot12
BU14-74A_spot2
BU14-74A_spot13
BU14-74A_spot14 | 1355
1354
1353
1354
1353
1354
1354
1354 | 1530
1530
1530
1530
1530
1530
1530
1530 | 1584
1584
1585
1585
1584
1585
1584
1585
1584
1585
1584 | 1621
1623
1622
1622
1623
1622
1623
1623 | 40
40
41
36
38
41
39
38
40
36
40
41
39 | 80
80
80
80
80
80
80
80
80
80 | 23
23
27
23
26
26
25
27
23
25
26
25
27 | 16
17
19
20
17
15
18
20
18
20
19
18
20 | 2800
3300
1750
2900
2650
3290
1500
2400
1900
1900
1600
2000
2800 | 0
0
0
0
0
0
0
0 | 4500
6700
2850
4500
4500
6150
2300
3450
4400
2850
2900
3800
4500 | 1200
1500
550
850
750
1050
420
640
550
510
450
700
590 | 158883
187255
101784
142805
142853
177668
77052
124749
107814
93562
90790
112165
143831 | 0
0
0
0
0
0
0
0
0
0 | 152076
218606
109161
146825
165976
218722
84487
132143
148696
101075
110788
139586
172360
167207 | 20419
27119
11113
18079
13559
16750
8040
13612
10528
10847
9093
13400
12549
14952
mean:
hternal): | 0.720
0.622
0.493
0.614
0.589
0.535
0.652
0.696
0.432
0.567
0.552
0.526
0.622
0.511
0.592
0.079 | 0.506
0.479
0.432
0.458
0.464
0.443
0.454
0.454
0.404
0.455
0.431
0.423
0.423
0.405
0.405
0.406
0.405 | 38
39
41
41
42
43
43
44
44
44
44
44
44
44
44
44
44
44 | | 8U14-74A_spot11
BU14-74A_spot8
BU14-74A_spot6
BU14-74A_spot7
BU14-74A_spot7
BU14-74A_spot1
BU14-74A_spot1
BU14-74A_spot1
BU14-74A_spot12
BU14-74A_spot2
BU14-74A_spot13
BU14-74A_spot14 | 1355
1354
1353
1354
1353
1354
1354
1354 | 1530
1530
1530
1530
1530
1530
1530
1530 | 1584
1584
1585
1585
1584
1585
1584
1585
1584
1585
1584 | 1621
1623
1622
1622
1623
1622
1623
1623 | 40
40
41
36
38
41
39
38
40
36
40
41
39 | 80
80
80
80
80
80
80
80
80
80 | 23
23
27
23
26
26
25
27
23
25
26
25
27 | 16
17
19
20
17
15
18
20
18
20
19
18
20 | 2800
3300
1750
2900
2650
3290
1500
2400
1900
1900
1600
2000
2800 | 0
0
0
0
0
0
0
0 | 4500
6700
2850
4500
4500
6150
2300
3450
4400
2850
2900
3800
4500 |
1200
1500
550
850
750
1050
420
640
550
510
450
700
590 | 158883
187255
101784
142805
142853
177668
77052
124749
107814
93562
90790
112165
143831 | 0
0
0
0
0
0
0
0
0
0 | 152076
218606
109161
146825
165976
218722
84487
132143
148696
101075
110788
139586
172360
167207 | 20419
27119
11113
18079
13559
16750
8040
13612
10528
10847
9093
13400
12549
14952
mean:
hternal): | 0.720
0.622
0.493
0.614
0.589
0.535
0.652
0.696
0.432
0.567
0.552
0.526
0.622
0.511
0.592
0.079 | 0.506 0.479 0.432 0.458 0.464 0.443 0.430 0.454 0.461 0.404 0.455 0.431 0.423 0.438 0.405 0.446 0.026 0.007 ternal): | 3:
3:
4:
4:
4:
4:
4:
4:
4:
4:
4:
4:
4:
4:
4: | | 8U14-74A_spot11
BU14-74A_spot8
BU14-74A_spot6
BU14-74A_spot7
BU14-74A_spot7
BU14-74A_spot1
BU14-74A_spot1
BU14-74A_spot1
BU14-74A_spot12
BU14-74A_spot12
BU14-74A_spot13
BU14-74A_spot13 | 1355
1354
1353
1354
1353
1354
1354
1354 | 1530
1530
1530
1530
1530
1530
1530
1530 | 1584
1584
1585
1585
1584
1585
1584
1585
1584
1585
1584
1585 | 1621
1623
1622
1622
1623
1622
1623
1623 | 40
40
41
36
38
41
39
38
40
36
40
41
39
38 | 80
80
80
80
80
80
80
80
80
80
80
80
80 | 23
23
27
23
26
26
25
27
23
25
26
25
27
25
26
25
27
25
26
25
27
25
26
25
27
25
26
26
26
27
27
28
28
28
28
28
28
28
28
28
28
28
28
28 | 16
17
19
20
17
15
18
20
19
18
20
19 | 2800
3300
1750
2900
2650
3290
1500
2400
1900
1900
1600
2000
2800
2250 | 0
0
0
0
0
0
0
0
0 | 4500
6700
2850
4500
4500
6150
2300
3450
4400
2850
2900
3800
4500
4400 | 1200
1500
550
850
750
1050
420
640
550
510
450
700
590
740 | 158883
187255
101784
142805
142853
177668
77052
124749
107814
93562
90790
112165
143831
123893 | 0 | 152076
218606
109161
146825
165976
218722
84487
132143
148696
101075
110788
139586
172360
167207
1σ (ir
1 SE (ir
prop. 2 SE | 20419
27119
11113
18079
13559
16750
8040
13612
10528
10847
9093
13400
12549
14952
mean:
nternal):
(internal | 0.720
0.622
0.493
0.614
0.644
0.589
0.535
0.652
0.696
0.432
0.667
0.552
0.526
0.622
0.511
0.592
0.079
0.020
and ext | 0.506 0.479 0.432 0.458 0.464 0.443 0.430 0.455 0.431 0.423 0.438 0.405 0.446 0.026 0.007 ternal): | 3:
3:
4:
4:
4:
4:
4:
4:
4:
4:
4:
4:
4:
4:
4: | | 8U14-74A_spot11
BU14-74A_spot8
BU14-74A_spot6
BU14-74A_spot3
BU14-74A_spot7
BU14-74A_spot1
BU14-74A_spot1
BU14-74A_spot1
BU14-74A_spot2
BU14-74A_spot2
BU14-74A_spot3
BU14-74A_spot13
BU14-74A_spot13
BU14-74A_spot13
BU14-74A_spot13 | 1355
1354
1353
1354
1353
1354
1354
1354 | 1530
1530
1530
1530
1530
1530
1530
1530 | 1584
1584
1585
1585
1585
1585
1585
1584
1585
1584
1585
1584
1585 | 1621
1623
1622
1622
1623
1623
1623
1623 | 40
40
41
36
38
41
39
38
40
41
39
38 | 80
80
80
80
80
80
80
80
80
80
80
80
80
8 | 23
23
27
23
26
26
25
27
23
25
26
25
27
25
27
25
27
25 | 16
17
19
20
17
15
18
20
19
18
20
19 | 2800
3300
1750
2900
2650
3290
1500
2400
1900
1900
2000
2800
2250 | 0 | 4500
6700
2850
4500
4500
6150
2300
3450
4400
2850
2900
3800
4500
4400 | 1200
1500
550
850
750
1050
420
640
550
510
450
700
590
740 | 158883
187255
101784
142805
142853
177668
77052
124749
107814
93562
90790
112165
143831
123893 | 0 | 152076 218606 109161 146825 165976 218722 84487 132143 148696 101075 110788 139586 172360 167207 1σ (irr 1 SE (irr prop. 2 SE | 20419
27119
11113
18079
13559
16750
8040
13612
10528
10847
9093
13400
12549
14952
mean:
iternal):
(internal | 0.720
0.622
0.493
0.614
0.644
0.589
0.535
0.652
0.696
0.432
0.667
0.552
0.526
0.622
0.511
0.592
0.079
0.020
and ext | 0.506 0.479 0.432 0.458 0.464 0.443 0.454 0.461 0.404 0.455 0.431 0.423 0.438 0.405 0.446 0.026 0.007 ternal): n: 0.413 | 3:
3:
4:
4:
4:
4:
4:
4:
4:
4:
4:
4:
4:
4:
4: | | 8U14-74A_spot11
BU14-74A_spot8
BU14-74A_spot5
BU14-74A_spot5
BU14-74A_spot5
BU14-74A_spot1
BU14-74A_spot1
BU14-74A_spot12
BU14-74A_spot12
BU14-74A_spot13
BU14-74A_spot13
BU14-74A_spot13
BU14-74A_spot15
BU14-74A_spot13
BU14-74A_spot13
BU14-74A_spot15 | 1355
1354
1353
1354
1353
1354
1354
1354 | 1530
1530
1530
1530
1530
1530
1530
1530 | 1584
1584
1585
1585
1585
1584
1585
1584
1585
1584
1585 | 1621
1623
1622
1622
1623
1623
1623
1623 | 40
40
41
36
38
41
39
38
40
36
40
41
39
38 | 80
80
80
80
80
80
80
80
80
80
80
80
80
8 | 23
23
27
23
26
26
25
27
23
25
26
25
27
25
27
25 | 16
17
19
20
17
15
18
20
18
20
19
18
20
19 | 2800
3300
1750
2900
2650
3290
1500
2400
1900
1600
2000
2800
2250 | 0
0
0
0
0
0
0
0
0
0
0
0
0 | 4500
6700
2850
4500
6150
2300
3450
4400
2850
2900
3800
4500
4400 | 1200
1500
550
850
750
1050
420
640
550
510
450
700
590
740 | 158883
187255
101784
142805
1428853
177668
77052
124749
107814
93562
90790
112165
143831
123893 | 0 | 152076
218606
109161
146825
165976
218722
84487
132143
148696
101075
110788
139586
172360
167207
15 (jir
prop. 2 SE | 20419
27119
11113
18079
13559
16750
8040
13612
10528
10847
9093
13400
12549
14952
mean:
hternal):
(internal): | 0.720
0.622
0.493
0.614
0.644
0.589
0.535
0.696
0.432
0.667
0.552
0.526
0.621
0.592
0.511
0.592
0.79
0.020
land ext | 0.506 0.479 0.432 0.458 0.464 0.430 0.454 0.461 0.404 0.455 0.431 0.423 0.423 0.423 0.423 0.423 0.423 0.438 0.405 0.421 0.401 0.405 0.421 0.403 | 3:
3:
4:
4:
4:
4:
4:
4:
4:
4:
4:
4:
4:
4:
4: | | 8U14-74A_spot1
BU14-74A_spot8
BU14-74A_spot8
BU14-74A_spot3
BU14-74A_spot7
BU14-74A_spot5
BU14-74A_spot1
BU14-74A_spot1
BU14-74A_spot1
BU14-74A_spot2
BU14-74A_spot3
BU14-74A_spot13
BU14-74A_spot13
BU14-74A_spot13
BU14-74A_spot13
BU14-75_spot3
BU14-75_spot3 | 1355
1354
1353
1354
1353
1354
1354
1354 | 1530
1530
1530
1530
1530
1530
1530
1530 | 1584
1584
1585
1585
1585
1586
1588
1584
1585
1584
1585
1584
1585
1585 | 1621
1623
1622
1622
1623
1623
1623
1623 | 40
40
41
36
38
41
39
38
40
36
40
41
39
38 | 80
80
80
80
80
80
80
80
80
80
80
80
80
70 | 23
23
27
23
26
26
25
27
23
25
26
25
27
25
27
25
27
25 | 16
17
19
20
17
15
18
20
18
20
19
18
20
19 | 2800
3300
1750
2900
2650
3290
1500
2400
1900
1600
2000
2800
2250 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 4500
6700
2850
4500
4500
6150
2300
3450
4400
2850
2900
3800
4500
4400 | 1200
1500
550
850
750
1050
420
640
550
700
590
740 | 158883
187255
101784
142805
177668
77052
124749
107814
93562
90790
112165
143831
123893 | 0 | 152076
218606
109161
146825
165976
218722
84487
132143
148696
101075
110788
139586
172360
167207
10 (jir
1 SE (jir
prop. 2 SE | 20419
27119
11113
18079
13559
16750
8040
13612
10528
10847
9093
13400
12549
14952
mean:
hternal):
(internal): | 0.720
0.622
0.493
0.614
0.589
0.535
0.652
0.696
0.432
0.667
0.552
0.526
0.622
0.511
0.592
0.079
0.020
and ext | 0.506
0.479
0.432
0.458
0.464
0.443
0.454
0.461
0.404
0.455
0.431
0.423
0.405
0.406
0.007
ternal):
0.436
0.436
0.438 | 3:
3:
4:
4:
4:
4:
4:
4:
4:
4:
4:
4:
4:
4:
4: | |
8014-74A_spot11
BU14-74A_spot8
BU14-74A_spot6
BU14-74A_spot5
BU14-74A_spot5
BU14-74A_spot5
BU14-74A_spot1
BU14-74A_spot1
BU14-74A_spot1
BU14-74A_spot1
BU14-74A_spot13
BU14-74A_spot13
BU14-74A_spot14
BU14-75_spot13
BU14-75_spot15
BU14-75_spot15 | 1355
1354
1353
1354
1353
1354
1354
1354 | 1530
1530
1530
1530
1530
1530
1530
1530 | 1584
1584
1585
1585
1585
1584
1585
1584
1585
1584
1585
1584
1585
1584
1585
1582
1582
1582
1582
1582
1582
1583 | 1621
1623
1622
1622
1623
1622
1623
1623 | 40
40
41
36
38
41
39
38
40
36
40
41
39
38
40
41
41
41
41
41
41
41
41
41
41
41
41
41 | 80
80
80
80
80
80
80
80
80
80
80
80
80
70
70
70
70
75 | 23
23
27
23
26
26
25
27
23
25
26
25
27
25
27
25
27
25
27
25
27
25
26
26
26
26
27
27
28
28
28
28
28
28
28
28
28
28
28
28
28 | 16
17
19
20
17
15
18
20
18
20
19
18
20
19 | 2800
3300
1750
2900
1500
2400
1900
1900
2000
2800
2250 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 4500
6700
2850
4500
6150
2300
3450
4400
2850
2900
3800
4500
4400 | 1200
1500
550
850
1050
420
640
550
700
590
740 | 158883
187255
101784
142805
142805
177668
77052
124749
107814
93562
90790
112165
143831
123893
56953
39892
143610
63618 | 0 | 152076
218606
109161
146825
165976
218722
84487
132143
148696
101075
110788
139586
172360
167207
16 (jir
prop. 2 SE | 20419
27119
11113
18079
13559
16750
8040
13612
10528
10847
9093
13400
12549
14952
mean:
hternal):
(internal): | 0.720 0.622 0.493 0.614 0.644 0.589 0.535 0.652 0.696 0.432 0.667 0.552 0.522 0.511 0.592 0.079 0.020 and ext | 0.506 0.479 0.432 0.458 0.464 0.443 0.455 0.404 0.455 0.405 0.405 0.406 0.007 0.406 0.007 0.407 0.408 0.384 0.389 0.329 0.296 0.282 | 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | BU14-74A_spot1
BU14-74A_spot8
BU14-74A_spot6
BU14-74A_spot3
BU14-74A_spot7
BU14-74A_spot5
BU14-74A_spot1
BU14-74A_spot1
BU14-74A_spot12
BU14-74A_spot12
BU14-74A_spot13
BU14-74A_spot13
BU14-74A_spot14
BU14-74A_spot15
BU14-75_spot13 | 1355
1354
1353
1354
1353
1354
1354
1354 | 1530
1530
1530
1530
1530
1530
1530
1530 | 1584
1584
1585
1585
1585
1586
1586
1584
1584
1584
1585
1584
1585
1582
1582
1582
1582
1582
1582
1582 | 1621
1623
1622
1623
1622
1623
1623
1623 | 40
40
41
36
38
41
39
38
40
41
39
38
40
41
39
38
40
41
41
42
42
42
45 | 80
80
80
80
80
80
80
80
80
80
80
80
70
70
70
70
70
75
75 | 23
23
27
23
26
26
25
27
23
25
26
25
27
25
27
25
27
25
27
25
27
25
27
25
27
25
27
27
20
20
20
20
20
20
20
20
20
20
20
20
20 | 16
17
19
20
17
15
18
20
19
18
20
19
18
20
19
18
20
19 | 2800
3300
1750
2900
2650
3290
1500
2400
1900
1600
2000
2800
2250
940
750
2700
1150
776
1000
650 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 4500
6700
2850
4500
4500
6150
2300
3450
4400
2850
2900
3800
4500
4400 | 1200
1500
550
850
1050
420
640
550
700
590
740
200
150
250
150 | 158883
187255
101784
142853
177668
77052
124749
107814
93562
90790
112165
143831
123893
56953
39892
143610
63618
42451 | 0 | 152076
218606
109161
146825
165976
218722
84487
132143
148696
101075
110788
139586
172360
167207
15 E (ir
prop. 2 SE
80817
62204
217369
126165
98489
135179
95046 | 20419
27119
11113
18079
13559
16750
8040
13612
10528
10847
9093
13400
12549
14952
mean:
hternal):
(internal):
(internal):
2978
1914
8508
3456
2552
3829
2169 | 0.720 0.622 0.493 0.614 0.644 0.589 0.535 0.652 0.696 0.432 0.667 0.552 0.511 0.592 0.079 0.020 and ext | 0.506 0.479 0.432 0.458 0.464 0.443 0.430 0.455 0.431 0.402 0.405 0.405 0.406 0.007 ternal): n: 0.413 0.384 0.389 0.329 0.296 0.282 0.275 | 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | BU14-74A_spot1
BU14-74A_spot8
BU14-74A_spot8
BU14-74A_spot5
BU14-74A_spot5
BU14-74A_spot5
BU14-74A_spot1
BU14-74A_spot1
BU14-74A_spot1
BU14-74A_spot2
BU14-74A_spot13
BU14-74A_spot13
BU14-74A_spot13
BU14-75_spot15
BU14-75_spot5
BU14-75_spot1
BU14-75_spot1
BU14-75_spot13
BU14-75_spot13
BU14-75_spot13
BU14-75_spot13
BU14-75_spot13
BU14-75_spot13
BU14-75_spot11
BU14-75_spot11 | 1355
1354
1353
1354
1353
1354
1354
1354 | 1530
1530
1530
1530
1530
1530
1530
1530 | 1584
1584
1585
1585
1585
1586
1586
1584
1585
1584
1585
1584
1585
1582
1582
1582
1582
1582
1582
1582 | 1621
1623
1622
1623
1622
1623
1623
1623 | 40
40
41
36
38
41
39
38
40
41
39
38
40
41
39
38
42
42
42
42
42
45
45
45
45
45
45
45
45
45
45
46
46
46
47
47
47
47
47
47
47
47
47
47
47
47
47 | 80
80
80
80
80
80
80
80
80
80
80
80
80
70
70
70
70
70
75
75 | 23
23
27
23
26
26
25
27
23
25
26
25
27
25
27
25
27
25
27
25
27
25
27
25
27
25
27
20
20
20
20
20
20
20
20
20
20
20
20
20 | 16
17
19
20
17
15
18
20
19
18
20
19
18
20
19
18
20
19
18
20
19
11
17
17
17
15
18
20
19
19
19
19
19
19
19
19
19
19
19
19
19 | 2800
3300
1750
2900
2650
3290
1500
2400
1900
2000
2800
2250
940
750
2700
1150
776
1000
650
1000 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 4500
6700
2850
4500
4500
6150
2300
3450
4400
2850
2900
3800
4500
4400
2450
2200
7150
4150
3300
4600
4350
4200 | 1200
1500
550
850
1050
420
640
550
700
590
740
200
150
500
250
150
300
120
230 | 158883
187255
101784
142805
177668
77052
124749
107814
93562
90790
112165
143831
123893
56953
39892
143610
63618
42451
54705
36814
52422 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 152076
218606
109161
146825
165976
218722
84487
132143
148696
101075
110788
139586
172360
167207
10 (jir
1 SE (jir
prop. 2 SE
80817
62204
217369
126165
98489
135179
95046
127685 | 20419
27119
11113
18079
13559
16750
8040
13612
10528
10847
9093
13400
12549
14952
mean:
internal):
(internal):
(internal):
2978
1914
8508
3456
2552
3829
2169
3180 | 0.720 0.622 0.493 0.614 0.644 0.589 0.535 0.652 0.696 0.432 0.667 0.552 0.592 0.079 0.020 land ext 0.384 0.341 0.378 0.277 0.235 0.217 0.194 0.238 | 0.506 0.479 0.432 0.458 0.464 0.443 0.430 0.454 0.461 0.404 0.455 0.431 0.405 0.046 0.026 0.007 ternal): 0.413 0.384 0.389 0.329 0.296 0.292 0.275 0.286 | 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | BU14-74A_spot1
BU14-74A_spot8
BU14-74A_spot8
BU14-74A_spot3
BU14-74A_spot7
BU14-74A_spot7
BU14-74A_spot1
BU14-74A_spot1
BU14-74A_spot1
BU14-74A_spot1
BU14-74A_spot1
BU14-74A_spot1
BU14-74A_spot13
BU14-74A_spot13
BU14-75_spot13
BU14-75_spot5
BU14-75_spot5
BU14-75_spot1
BU14-75_spot13
BU14-75_spot13
BU14-75_spot13
BU14-75_spot13
BU14-75_spot11
BU14-75_spot11
BU14-75_spot11 | 1355
1354
1353
1354
1353
1354
1354
1354 | 1530
1530
1530
1530
1530
1530
1530
1530 | 1584
1584
1585
1585
1585
1584
1585
1584
1585
1584
1585
1584
1585
1582
1582
1582
1582
1582
1582
1582 | 1621
1623
1622
1623
1622
1623
1623
1623 | 40
40
41
36
38
41
39
38
40
41
39
38
40
41
39
38
42
42
42
42
42
45
45
45
40
40
41
41
41
41
41
41
41
41
41
41
41
41
41 | 80
80
80
80
80
80
80
80
80
80
80
80
70
70
70
70
75
75 | 23
23
27
23
26
26
25
27
23
25
26
25
27
25
27
25
27
25
27
25
27
25
27
25
27
25
27
20
20
20
20
20
20
20
20
20
20
20
20
20 |
16
17
19
20
17
15
18
20
19
18
20
19
18
20
19
11
14
12
16
13
16
12
17
17
17
17
17
18
18
18
19
19
19
19
19
19
19
19
19
19
19
19
19 | 2800
3300
1750
2900
1500
2400
1900
1900
2000
2800
2250
940
750
2700
1150
776
1000
650
1000
1180 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 4500
6700
2850
4500
6150
2300
3450
4400
2850
2900
3800
4500
4400
2450
2200
7150
4150
3300
4600
4900 | 1200
1500
550
850
1050
420
640
550
700
590
740
200
150
250
150
300
120
230
150 | 158883
187255
101784
142853
177668
77052
124749
107814
93562
90790
112165
143831
123893
56953
39892
143610
63618
42451
54705
36814
52422
59774 | 0 | 152076
218606
109161
146825
165976
218722
84487
132143
148696
101075
110788
139586
172360
167207
16 (jir
prop. 2 SE
80817
62204
217369
126165
98489
135179
95046
127685
148966 | 20419
27119
11113
18079
13559
16750
8040
13612
10528
10847
9093
13400
12549
14952
mean:
hternal):
(internal):
(internal):
2978
1914
8508
3456
2552
3829
2169
3180
1914 | 0.720 0.622 0.493 0.614 0.589 0.535 0.652 0.696 0.432 0.667 0.552 0.526 0.622 0.591 0.591 0.384 0.341 0.378 0.277 0.235 0.217 0.194 0.238 0.241 | 0.506 0.479 0.432 0.458 0.464 0.461 0.404 0.405 0.430 0.455 0.431 0.405 0.406 0.007 ternal): n: 0.413 0.384 0.389 0.329 0.296 0.282 0.275 0.286 | 33
34
44
44
44
44
44
44
44
45
55
55
55 | | BU14-74A_spot1BU14-74A_spot8BU14-74A_spot8BU14-74A_spot3BU14-74A_spot5BU14-74A_spot5BU14-74A_spot1BU14-74A_spot1BU14-74A_spot1BU14-74A_spot1BU14-74A_spot1BU14-74A_spot1BU14-74A_spot1BU14-74A_spot1BU14-74A_spot1BU14-74A_spot1BU14-74A_spot1BU14-75A_spot1BU | 1355
1354
1353
1354
1353
1354
1354
1354 | 1530
1530
1530
1530
1530
1530
1530
1530 | 1584
1584
1585
1585
1584
1585
1584
1585
1584
1585
1584
1585
1582
1582
1582
1582
1582
1582
1582 | 1621
1623
1622
1623
1622
1623
1623
1623 | 40
40
41
36
38
41
39
38
40
41
39
38
40
41
39
38
42
42
42
42
45
45
45
40
44 | 80
80
80
80
80
80
80
80
80
80
80
80
80
70
70
70
70
75
75
75 | 23
23
27
23
26
26
25
27
23
25
26
25
27
25
27
25
27
25
27
25
27
25
27
20
20
20
20
20
20
20
20
20
20
20
20
20 | 16
17
19
20
17
15
18
20
19
18
20
19
18
20
19
18
21
16
13
16
12
17
17
17
18
18
18
19
19
19
19
19
19
19
19
19
19
19
19
19 | 2800
3300
1750
2900
2650
2500
2400
1900
1900
2000
2800
2250
940
750
2700
1150
776
1000
650
1000
1180
770 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 4500
6700
2850
4500
6150
2300
3450
4400
2850
2900
3800
4500
4400
2200
7150
3300
4600
3350
4600
3350
4900
4900 | 1200
1500
550
850
1050
420
640
550
700
590
740
200
150
250
150
300
120
300 | 158883
187255
101784
142853
177668
77052
124749
107814
93562
90790
112165
143831
123893
56953
39892
143610
63618
42451
54705
36814
52422
59774
46343 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 152076
218606
109161
146825
165976
218722
84487
132143
148696
101075
110788
139586
172360
167207
16 (ir
1 SE (ir
prop. 2 SE
80817
62204
217369
126165
98489
135179
95046
127685
148966
121605 | 20419
27119
11113
18079
13559
16750
8040
13612
10528
10847
9093
13400
12549
14952
mean:
tternal):
(internal):
(internal):
2978
1914
4508
3456
2552
3829
2169
3180
1914
5105 | 0.720 0.622 0.493 0.614 0.644 0.589 0.535 0.652 0.696 0.432 0.526 0.622 0.511 0.592 0.079 0.020 and ext 0.384 0.378 0.277 0.235 0.217 0.194 0.238 0.241 0.193 | 0.506 0.479 0.432 0.458 0.464 0.461 0.403 0.455 0.431 0.423 0.438 0.405 0.406 0.007 ternal): n: 0.413 0.384 0.389 0.329 0.296 0.282 0.275 0.286 0.284 | 33
34
44
44
43
43
43
44
44
44
44
45
66
56
56
56
56 | | BU14-74A_spot1BU14-74A_spot8BU14-74A_spot8BU14-74A_spot3BU14-74A_spot5BU14-74A_spot5BU14-74A_spot1BU14-74A_spot1BU14-74A_spot1BU14-74A_spot1BU14-74A_spot1BU14-74A_spot1BU14-74A_spot1BU14-74A_spot1BU14-74A_spot1BU14-74A_spot1BU14-74A_spot1BU14-74A_spot1BU14-75A_spot2BU14-75A_spot2BU | 1355
1354
1353
1354
1353
1354
1354
1354 | 1530
1530
1530
1530
1530
1530
1530
1530 | 1584
1584
1585
1585
1584
1585
1584
1585
1584
1585
1584
1585
1582
1582
1582
1582
1582
1582
1582 | 1621
1623
1622
1623
1622
1623
1623
1623 | 40
40
41
36
38
41
39
38
40
41
39
38
40
41
39
38
42
42
42
45
45
45
45
40
44
44
46 | 80
80
80
80
80
80
80
80
80
80
80
80
70
70
70
70
75
75
75
75 | 23
23
27
23
26
26
25
27
23
25
26
25
27
25
27
25
27
25
20
20
20
20
20
20
20
20
20
20
20
20
20 | 16
17
19
20
17
15
18
20
19
18
20
19
18
20
19
18
20
19
18
20
19
18
20
19
18
20
19
10
10
10
10
10
10
10
10
10
10
10
10
10 |
940
750
2900
2400
1900
2400
1900
1900
2000
2800
2250
940
750
2700
1150
776
1000
650
1000
1180
770
776 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 4500
6700
2850
4500
4500
6150
2300
3450
4400
2900
3800
4500
4400
2200
7150
3300
4600
3350
4200
4900
4000
4100 | 1200
1500
550
850
1050
420
640
550
510
700
590
740
200
150
300
120
230
150
300
170 | 158883
187255
101784
142853
142853
177668
77052
124749
107814
93562
90790
112165
143831
123893
56953
39892
143610
63618
42451
54705
36814
52422
59774
46343
45205 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 152076
218606
109161
146825
165976
218722
84487
132143
148696
101075
110788
139586
172360
167207
15 E (ir
prop. 2 SE
80817
62204
217369
126165
98489
135179
95046
127686
148966
121605
122365 | 20419
27119
11113
18079
13559
16750
8040
13612
10528
10847
9093
13400
12549
14952
mean:
nternal):
(internal):
(internal):
2978
1914
8508
3456
2552
3829
2169
3180
1914
5105
2169 | 0.720 0.622 0.493 0.614 0.644 0.589 0.535 0.652 0.696 0.432 0.552 0.552 0.592 0.511 0.592 0.079 0.020 and ext 0.384 0.341 0.378 0.277 0.194 0.238 0.241 0.193 0.189 | 0.506 0.479 0.432 0.458 0.464 0.443 0.455 0.404 0.455 0.405 0.405 0.406 0.007 0.406 0.007 0.413 0.384 0.389 0.329 0.296 0.282 0.275 0.286 0.284 0.268 | 33
34
44
44
44
44
44
44
44
44
44
45
55
55
55 | | BU14-74A_spot1 BU14-74A_spot8 BU14-74A_spot8 BU14-74A_spot8 BU14-74A_spot7 BU14-74A_spot5 BU14-74A_spot5 BU14-74A_spot1 BU14-74A_spot1 BU14-74A_spot1 BU14-74A_spot2 BU14-74A_spot2 BU14-74A_spot1 BU14-74A_spot13 BU14-74A_spot13 BU14-75_spot13 BU14-75_spot8 BU14-75_spot1 BU14-75_spot2 BU14-75_spot4 | 1355
1354
1353
1354
1353
1354
1354
1354 | 1530
1530
1530
1530
1530
1530
1530
1530 | 1584
1584
1585
1585
1585
1586
1586
1584
1584
1585
1584
1585
1582
1582
1582
1582
1582
1582
1582 | 1621
1623
1622
1623
1622
1623
1623
1623 | 40
40
41
36
38
41
39
38
40
41
39
38
40
41
39
38
40
41
42
42
42
42
45
43
44
44
46
42 | 80
80
80
80
80
80
80
80
80
80
80
80
70
70
70
70
75
75
75
75
75
70
70 | 23
23
27
23
26
26
25
27
23
25
26
25
27
25
27
25
20
20
20
20
20
20
20
21
21
21
21
21
21
21
21
21
21
21
21
21 | 16
17
19
20
17
15
18
20
19
18
20
19
18
20
19
18
21
16
13
16
12
17
13
12
16
12
17
17
18
18
18
18
18
18
18
18
18
18
18
18
18 | 2800
3300
1750
2900
2650
3290
1500
2400
1900
1600
2000
2800
2250
2700
1150
776
1000
650
1000
1180
770
776
870 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 2450
2850
4500
4500
4500
6150
2300
34400
2850
2900
3800
4500
4400
2200
7150
4150
3300
4600
3350
4200
4900
4100
4800 | 1200
1500
550
850
7750
1050
420
640
450
700
590
740
150
500
250
120
230
150
300
170
100 | 158883
187255
101784
142805
177668
77052
124749
107814
93562
90790
112165
143831
123893
56953
39892
143610
63618
42451
54705
36814
52422
59774
46343
45205
49982 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 152076
218606
109161
146825
165976
218722
84487
132143
148696
101075
110788
139586
172360
167207
15 E (ir
prop. 2 SE
80817
62204
217369
126165
98489
135179
95046
127685
148966
121605
122365
143257 | 20419
27119
11113
18079
13559
16750
8040
13612
10528
10847
9093
13400
12549
14952
mean:
hternal):
(internal):
(internal):
2978
1914
8508
3456
2552
3829
2169
3180
1914
5105
2169
1063 | 0.720 0.622 0.493 0.614 0.644 0.589 0.535 0.652 0.696 0.432 0.667 0.552 0.511 0.592 0.079 0.020 land ext 0.384 0.341 0.378 0.275 0.235 0.217 0.194 0.238 0.241 0.193 0.189 0.181 | 0.506 0.479 0.432 0.458 0.464 0.443 0.430 0.455 0.431 0.402 0.405 0.405 0.406 0.266 0.282 0.275 0.286 0.284 0.286 0.286 0.266 0.266 0.265 | 33
34
44
44
43
44
44
44
44
45
60
50
50
55
55 | | BU14-74A_spot1BU14-74A_spot8BU14-74A_spot8BU14-74A_spot3BU14-74A_spot5BU14-74A_spot5BU14-74A_spot1BU14-74A_spot1BU14-74A_spot1BU14-74A_spot1BU14-74A_spot1BU14-74A_spot1BU14-74A_spot1BU14-74A_spot1BU14-74A_spot1BU14-74A_spot1BU14-74A_spot1BU14-74A_spot1BU14-75A_spot2BU14-75A_spot2BU | 1355
1354
1353
1354
1353
1354
1354
1354 | 1530
1530
1530
1530
1530
1530
1530
1530 | 1584
1584
1585
1585
1584
1585
1584
1585
1584
1585
1584
1585
1582
1582
1582
1582
1582
1582
1582 | 1621
1623
1622
1623
1622
1623
1623
1623 | 40
40
41
36
38
41
39
38
40
41
39
38
40
41
39
38
42
42
42
45
45
45
45
40
44
44
46 | 80
80
80
80
80
80
80
80
80
80
80
80
70
70
70
70
75
75
75
75 | 23
23
27
23
26
26
25
27
23
25
26
25
27
25
27
25
27
25
20
20
20
20
20
20
20
20
20
20
20
20
20 | 16
17
19
20
17
15
18
20
19
18
20
19
18
20
19
18
20
19
18
20
19
18
20
19
18
20
19
10
10
10
10
10
10
10
10
10
10
10
10
10 | 940
750
2900
2400
1900
2400
1900
1900
2000
2800
2250
940
750
2700
1150
776
1000
650
1000
1180
770
776 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 4500
6700
2850
4500
4500
6150
2300
3450
4400
2900
3800
4500
4400
2200
7150
3300
4600
3350
4200
4900
4000
4100 | 1200
1500
550
850
1050
420
640
550
510
700
590
740
200
150
300
120
230
150
300
170 | 158883
187255
101784
142853
142853
177668
77052
124749
107814
93562
90790
112165
143831
123893
56953
39892
143610
63618
42451
54705
36814
52422
59774
46343
45205 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 152076
218606
109161
146825
165976
218722
84487
132143
148696
101075
110788
139586
172360
167207
15 E (ir
prop. 2 SE
80817
62204
217369
126165
98489
135179
95046
127686
148966
121605
122365 | 20419
27119
11113
18079
13559
16750
8040
13612
10528
10847
9093
13400
12549
14952
mean:
nternal):
(internal):
(internal):
2978
1914
8508
3456
2552
3829
2169
3180
1914
5105
2169 | 0.720 0.622 0.493 0.614 0.644 0.589 0.535 0.652 0.696 0.432 0.552 0.552 0.592 0.511 0.592 0.079 0.020 and ext 0.384 0.341 0.378 0.277 0.194 0.238 0.241 0.193 0.189 | 0.506 0.479 0.432 0.458 0.464 0.443 0.455 0.404 0.455 0.405 0.405 0.406 0.007 0.406 0.007 0.413 0.384 0.389 0.329 0.296 0.282 0.275 0.286 0.284 0.268
| 33
34
44
44
43
44
44
44
44
44
45
65
65
65
65
65
65
65
65
65
65
65
65
65 | | BU14-76_sport14 | n: 0.429 4 0.439 4 0.429 4 0.362 4 0.365 4 0.362 4 0.320 4 0.323 4 0.320 4 0.307 4 0.318 5 0.328 4 0.320 4 0.307 4 0.318 5 0.318 6 0.348 6 0.3 | |--|--| | ## BU14-76_sport14 BU14-76_sport15 BU14-77A_sport16 BU14-77A_sport17 | ernal): n: 0.429 4 0.439 4 0.439 4 0.365 4 0.365 4 0.348 4 0.327 4 0.318 4 0.327 4 0.318 5 0.320 4 0.307 4 0.312 5 0.356 4 0.450 3 0. | | BU14-76_sport14 | n: 0.429 | | BU14-76_sports | 0.429 | | BU14-76_sports | 0.439 | | BU14-76_sport1 152_ 1520 1583 1622 41 80 2 6 17 2000 0 4600 400 116325 0 175732 7232 0.435 BU14-76_sport1 1553 1520 1584 1622 46 75 25 17 1280 0 3500 300 71579 0 128567 5424 0.366 BU14-76_sport1 1554 1530 1584 1622 46 75 25 17 1280 0 3500 300 71579 0 128567 5424 0.366 BU14-76_sport1 3152 1520 1583 1621 42 80 26 18 2150 0 6250 480 121699 0 204204 10209 0.434 BU14-76_sport1 3154 1520 1583 1621 42 80 26 18 2150 0 6250 480 121699 0 204204 10209 0.434 BU14-76_sport1 3154 1520 1583 1622 46 80 26 20 1230 0 4200 230 80264 0 160541 4892 0.293 BU14-76_sport1 3155 1520 1583 1622 44 80 25 20 680 0 2000 100 34009 0 78540 2122 0.367 BU14-76_sport1 3156 1520 1584 1623 45 75 26 17 1450 0 4400 350 79322 0 162288 6328 0.334 BU14-76_sport1 3155 1530 1583 1621 44 75 26 17 1450 0 4400 350 79322 0 162288 6328 0.334 BU14-76_sport2 3153 1530 1583 1621 44 75 26 17 1450 0 4400 350 79322 0 162288 6328 0.330 BU14-76_sport2 3153 1530 1583 1621 44 75 26 17 1450 0 4400 350 79322 0 162288 6328 0.330 BU14-76_sport3 3153 1530 1583 1621 44 155 2 8 8 30 25 1150 390 3550 500 75731 33180 167290 13293 0.324 BU14-77AA_sport1 3151 1530 1582 1624 45 75 24 11 190 50 2370 250 77654 3988 89347 5583 0.594 BU14-77AA_sport1 3151 1530 1582 1624 45 75 24 11 190 50 2370 250 77654 3988 89347 5583 0.594 BU14-77AA_sport1 3151 1530 1582 1622 45 75 24 21 1190 50 2370 250 77654 3988 89347 5583 0.594 BU14-77AA_sport1 3151 1530 1582 1622 45 75 24 21 1190 50 2370 250 77654 3988 89347 5583 0.594 BU14-77AA_sport1
3151 1530 1582 1624 45 75 24 21 1190 50 2370 250 77654 3988 89347 5583 0.594 BU14-77AA_sport1 3151 1530 1582 1624 45 75 24 21 1190 50 2370 250 77654 3988 89347 5583 0.594 BU14-77AA_sport1 3151 1530 1582 1624 45 75 24 21 1190 50 2370 250 77654 3988 89347 5583 0.594 BU14-77AA_sport1 3151 1530 1582 1624 45 75 24 21 1190 50 260 0.000 | 0.389 | | BU14-76_spot10 1353 1520 1584 1623 41 80 27 18 2120 0 5400 420 123305 0 214229 8040 0.393 BU14-76_spot11 1354 1520 1583 1624 41 80 26 20 2170 0 5000 480 121699 0 204204 10209 0.434 BU14-76_spot13 1352 1520 1583 1624 41 80 26 18 2150 0 6250 480 121699 0 204204 10209 0.434 BU14-76_spot13 1352 1520 1583 1622 44 80 25 16 1050 0 4200 230 80264 0 160451 4892 0.293 BU14-76_spot12 1353 1520 1583 1622 44 80 25 16 1050 0 3600 200 613195 0 132240 3403 0.292 BU14-76_spot12 1354 1530 1584 1623 44 80 25 26 80 260 200 200 39409 0 76540 2127 0.340 BU14-76_spot12 1354 1530 1584 1623 45 75 26 15 1450 0 4390 3590 390 76012 0 145690 6221 0.356 BU14-76_spot13 1355 1530 1583 1621 44 75 26 17 1450 0 4400 350 80796 0 176044 6238 0.293 BU14-76_spot14 1355 1530 1583 1621 44 75 26 17 1450 0 4950 350 80796 0 176044 6238 0.293 BU14-76_spot15 1359 1520 1583 1621 44 75 26 17 1450 0 4950 350 80796 0 176044 6238 0.293 BU14-77AA_spot1 3351 1530 1582 1623 46 75 24 21 1190 50 2370 250 77654 3988 89347 5583 0.502 BU14-77AA_spot1 3351 1530 1582 1624 45 75 24 21 1190 50 2370 250 77654 3988 89347 5583 0.502 BU14-77AA_spot1 3551 1530 1582 1624 45 75 24 21 1190 50 2370 250 77654 3988 89347 5583 0.502 BU14-77AA_spot1 3551 1530 1582 1624 45 75 22 15 480 0 1500 60 30642 0 11875 5743 0.540 BU14-77AA_spot1 3551 1530 1582 1629 47 57 24 18 1700 3100 0 30642 0 11875 5743 0.540 BU14-77AA_spot1 3551 1530 1582 1629 47 57 24 18 1700 3100 0 30642 0 30642 0 11875 5743 0.540 BU14-77AA_spot1 3154 | 0.365 | | BU14-76_sport1 1354 1530 1584 1622 46 75 25 17 1280 0 3500 300 71579 0 128567 5424 0.3666 BU14-76_sport13 1352 1520 1583 1621 42 80 26 20 2170 0 5000 4200 220 8064 0 10209 0.344 BU14-76_sport13 1352 1520 1583 1621 42 80 26 20 1230 0 4200 230 8064 0 1060451 4892 0.293 BU14-76_sport13 1353 1520 1583 1621 44 80 25 16 1050 0 3600 200 63195 0 132240 3403 0.292 BU14-76_sport6 1356 1520 1584 1623 44 80 25 20 680 0 2000 100 39409 0 78540 2127 0.340 BU14-76_sport14 1355 1530 1583 1622 45 75 26 17 1450 0 4400 350 79322 0 162288 6328 0.330 BU14-76_sport3 1353 1530 1583 1622 45 75 26 17 1450 0 4400 350 79322 0 162288 6328 0.330 BU14-76_sport3 1359 1520 1584 1623 52 80 30 25 1150 390 3550 500 75731 33180 16729 13293 0.324 BU14-76_sport1 1351 1530 1582 1622 45 75 26 17 1450 0 4950 350 80796 0 176044 6328 0.293 BU14-77A_sport16 1349 1500 1583 1622 46 75 24 21 1190 50 2370 250 77654 3988 89347 5588 0.032 BU14-77AA_sport1 1351 1530 1582 1622 47 75 24 18 1700 0 3150 300 79666 0 18752 5743 0.540 BU14-77AA_sport1 1351 1530 1582 1622 47 75 24 18 1700 0 3150 300 0 3064 0 120951 2680 0.404 BU14-77AA_sport1 1351 1530 1582 1624 47 75 24 18 1700 0 3600 0 36748 0 51836 6379 0.320 BU14-77AA_sport1 1351 1530 1582 1624 47 75 24 18 1700 0 300 0 0 36748 0 51836 6379 0.320 BU14-77AA_sport1 1354 1530 1582 1624 47 75 24 18 1700 0 300 0 0 0 0 0 0 0 | 0.348 | | BU14-76_sport19 BU14-76_sport12 BU14-76_sport13 BU14-76_sport13 BU14-76_sport13 BU14-76_sport13 BU14-76_sport14 BU14-76_sport14 BU14-76_sport14 BU14-76_sport14 BU14-76_sport15 BU14-77A_sport15 BU14-77A_sport16 BU14-77AA_sport16 BU14-77AA_sport16 BU14-77AA_sport16 BU14-77AA_sport16 BU14-77AA_sport1 BU14-77AA_sport2 BU14-77AA_sport1 BU14-75A_sport11 BU14-75A_sport11 BU14-75A_ | 0.362 | | BU14-76_sport3 | 0.340 | | BU14-76_sport12 | 0.327 | | BU14-76_spot12 1353 1520 1583 1623 44 80 25 16 1050 0 3600 200 63195 0 132240 3403 0.922 BU14-76_spot6 1355 1520 1584 1623 44 80 25 20 680 0 2000 100 39409 0 76512 0 145690 6221 0.367 BU14-76_spot1 1355 1530 1583 1622 45 75 26 17 1450 0 4900 350 79322 0 162288 6328 0.330 BU14-76_spot3 1353 1530 1583 1622 45 75 26 17 1450 0 4900 350 79322 0 162288 6328 0.330 BU14-76_spot5 1359 1520 1584 1623 52 80 30 25 1150 30 0 4500 350 8096 0 176044 6328 0.923 BU14-77A_spot1 1351 1530 1582 1623 44 100 22 18 640 0 1300 55 35662 0 42023 1053 0.922 BU14-77A_spot1 1351 1530 1582 1623 46 75 24 18 1700 0 3150 300 97666 0 118752 5743 0.540 BU14-77A_spot4 1351 1530 1582 1623 46 75 24 18 1700 0 3150 300 97666 0 118752 5743 0.540 BU14-77A_spot4 1351 1530 1582 1623 46 75 24 18 1700 0 3150 300 97666 0 118752 5743 0.540 BU14-77A_spot4 1351 1530 1582 1623 46 75 24 18 1700 0 3150 300 97666 0 118752 5743 0.540 BU14-77A_spot4 1351 1530 1582 1623 46 75 22 15 480 0 1500 60 30642 0 51836 597 0.320 BU14-77A_spot1 1351 1530 1582 1622 47 75 24 18 1700 0 3150 300 97666 0 118752 5743 0.540 BU14-77A_spot1 1351 1530 1582 1622 47 75 24 18 1700 0 3150 300 97666 0 118752 5743 0.540 BU14-77A_spot8 1354 1530 1582 1622 50 75 28 14 1110 0 2750 180 73101 0 120951 2680 0.440 BU14-77A_spot1 1354 1530 1582 1622 675 75 24 18 1750 0 5400 90 110810 0 203575 1723 0.324 BU14-77A_spot1 1354 1530 1582 1629 49 75 27 14 1170 0 3300 200 7663 0 139958 2978 0.355 BU14-77A_spot2 1349 1500 1583 1623 44 100 24 16 190 0 640 25 11455 0 21790 425 0.297 BU14-77A_spot2 1349 1500 1583 1623 44 100 24 16 190 0 640 25 11455 0 21790 425 0.297 BU14-77A_spot2 1349 1500 1583 1623 44 100 24 16 190 0 640 25 11455 0 20770 3 3180 50 139958 2978 0.355 BU14-77A_spot2 1349 1500 1583 1623 44 100 24 16 190 0 640 25 11455 0 20973 0 139958 2978 0.355 BU14-77A_spot2 1349 1500 1583 1623 44 100 24 16 190 0 640 25 11455 0 20973 0 139958 2978 0.355 BU14-77A_spot1 1355 1530 1580 1583 1622 44 100 24 18 800 200 900 500 0 900 500 0 900 500 0 900 5000 0 900 500 0 900 500 0 900 500 0 900 500 0 900 500 0 900 500 | 0.318 | | BU14-76_spot6 1356 1520 1584 1623 44 80 25 20 680 0 2000 100 39409 0 78540 2127 0.340 BU14-76_spot2 1355 1530 1581 1623 45 75 26 15 1450 0 3950 390 76012 0 145690 6221 0.367 BU14-76_spot3 1353 1330 1583 1621 44 75 26 17 1450 0 4450 350 80796 0 176044 6328 0.293 BU14-76_spot5 1359 1520 1584 1623 52 80 30 25 1150 390 3550 500 75731 33180 16729 13293 0.324 BU14-77AA_spot16 1349 1500 1583 1623 44 100 22 18 640 0 1300 55 35662 0 42023 1053 0.492 BU14-77AA_spot1 1351 1530 1582 1623 46 75 24 21 1190 50 2370 250 77654 3988 89347 5583 0.502 BU14-77AA_spot4 1351 1530 1582 1623 46 75 24 21 1190 50 2370 250 77654 3988 89347 5583 0.502 BU14-77AA_spot4 1351 1530 1582 1623 46 75 24 18 1700 0 3150 300 60 30642 0 5186 597 0.325 BU14-77AA_spot4 351 1530 1582 1624 45 75 22 15 480 0 1500 60 30642 0 5186 597 0.325 BU14-77AA_spot5 1352 1530 1582 1620 50 75 24 18 1750 0 5400 90 11810 0 203575 1723 0.324 BU14-77AA_spot6 1345 1530 1582 1620 50 75 24 18 1750 0 5400 90 11810 0 203575 1723 0.324 BU14-77AA_spot6 1347 1530 1582 1613 44 100 24 16 190 640 25 11435 0 21995 2680 0.404 BU14-77AA_spot6 1347 1530 1581 1613 50 75 27 14 1170 0 3300 200 72603 0 139958 278 0.355 BU14-77AA_spot18 1349 1500 1583 1619 44 100 24 16 190 640 25 11435 0 21590 36035 30734 0.226 BU14-77AA_spot18 1349 1500 1583 1619 44 100 24 16 190 640 25 11435 0 21995 2790 425 0.297 BU14-77AA_spot18 1349 1500 1583 1619 44 100 24 18 205 0 90 90 90 90 90 90 9 | 0.328 | | BU14-76_spot2 1354 1530 1584 1622 45 75 26 15 1450 0 3950 390 76012 0 145690 6221 0.367 BU14-76_spot4 1355 1530 1583 1621 44 75 26 17 1450 0 4490 350 80796 0 176044 6228 0.330 BU14-76_spot5 1359 1520 1584 1623 52 80 30 25 1150 390 3550 80796 0 176044 6228 0.293 BU14-76_spot5 1359 1520 1584 1623 52 80 30 25 1150 390 3550 80796 0 176044 6228 0.293 BU14-77A_spot16 1349 1500 1583 1623 44 100 22 18 640 0 1300 55 35662 0 42023 1053 0.892 BU14-77A_spot11 1351 1530 1582 1623 46 75 24 21 1190 50 2370 250 77654 3988 89347 5583 0.502 BU14-77A_spot4 1351 1530 1582 1622 42 75 24 18 1700 0 3150 300 97666 0 118752 5743 0.540 BU14-77A_spot8 1354 1530 1582 1622 42 75 22 15 480 0 1500 60 30642 0 51836 957 0.320 BU14-77A_spot17 1351 1530 1582 1622 50 75 28 14 1110 0 2750 180 73101 0 120951 2680 0.404 BU14-77A_spot8 1354 1530 1582 1622 50 75 28 14 1110 0 2750 180 73101 0 120951 2680 0.404 BU14-77A_spot17 1354 1530 1582 1622 50 75 28 14 1110 0 2750 180 73101 0 120951 2680 0.404 BU14-77A_spot18 1354 1530 1582 1622 50 75 28 18 1750 0 5400 90 110810 0 203575 1723 0.324 BU14-77A_spot19 1358 1530 1581 1623 44 100 24 16 190 0 640 25 11435 0 21790 425 0.297 BU14-77A_spot10 1354 1530 1582 1622 44 100 24 16 190 0 640 25 11435 0 21790 425 0.297 BU14-77A_spot10 1349 1500 1583 1619 44 100 24 18 1200 0 400 25 1110 200 36748 0 36935 30734 0.265 BU14-77A_spot10 1349 1500 1583 1612 44 100 24 18 1200 0 640 25 11435 0 0 139958 278 0.355 BU14-77A_spot10 1357 1500 1583 1622 | 0.333 | | BU14-76_sport4 1355 1530 1583 1621 44 75 26 17 1450 0 4400 350 79322 0 162286 6328 0.330 8014-76_sport5 1359 1520 1584 1623 52 80 30 25 1150 390 3550 500 75731 33180 16729 13293 0.324 mean: 1st (internal); 0.082 1584 1623 52 80 30 25 1150 390 3550 500 75731 33180 16729 13293 0.324 mean: 1st (internal); 0.082 1584 0.534 1580 1582 1623 46 75 24 21 1190 50 2370 250 77654 3988 89347 5583 0.502 1694 1351 1530 1582 1623 46 75 24 21 1190 50 2370 250 77654 3988 89347 5583 0.502 1694 1351 1530 1582 1624 45 75 22 15 480 0 1500 60 30642 0 51836 957 0.320 1047-77AA_spot4 1351 1530 1582 1624 45 75 22 15 480 0 1500 60 30642 0 51836 957 0.320 1047-77AA_spot5 1354 1530 1582 1629 50 75 24 18 1750 0 5400 90 11081 0 203575 1733 3.324 1047-77AA_spot6 1347 1530 1547 1613 50 75 24 18 1750 0 5400 90 11081 0 203575 1733 3.324 1047-77AA_spot6 1347 1530 1547 1613 50 75 22 17 1680 0 2300 200 77603 0 139958 2978 0.355 1014-77AA_spot13 1347 1530 1547 1613 50 75 22 17 16560 0 2500 | 0.307 | | BU14-76_spot5 1359 1520 1584 1623 52 80 30 25 1150 390 3550 500 75731 33180
167290 3293 0.324 mean: 0.386 1561 156 | 0.312 5 0.356 4 0.043 0.011 ernal): n: 0.453 3 0.450 3 0.440 4 0.367 4 0.367 4 0.377 4 0.352 4 0.340 4 0.337 4 0.292 4 | | BU14-77AA_sport16 1349 1500 1583 1622 44 100 22 18 640 0 1300 55 35662 0 42023 1053 0.924 | 0.356 4 0.043 0.011 ernal): n: 0.453 3 0.450 3 0.440 4 0.367 4 0.377 4 0.352 4 0.340 4 0.337 4 0.292 4 | | BU14-77AA_sport1 1349 1500 1583 1623 44 100 22 18 640 0 1300 55 35662 0 42023 1053 0.492 0.5402 BU14-77AA_sport1 1351 1530 1582 1623 46 75 24 18 1700 0 3150 300 97666 0 11875 5743 0.5402 BU14-77AA_sport2 1349 1530 1582 1622 42 75 24 18 1700 0 3150 300 97666 0 11875 5743 0.5402 BU14-77AA_sport3 1351 1530 1582 1622 42 75 24 18 1700 0 3150 300 97666 0 11875 5743 0.5402 BU14-77AA_sport2 1349 1530 1582 1622 42 75 24 18 1700 0 3150 300 97666 0 11875 5743 0.5402 BU14-77AA_sport3 1354 1530 1582 1622 50 75 28 14 1110 0 2750 180 73101 0 120951 2680 0.4404 BU14-77AA_sport3 1354 1530 1582 1622 50 75 24 18 1750 0 5400 90 10810 0 20357 1723 0.3242 BU14-77AA_sport3 1354 1530 1582 1623 44 100 24 16 190 0 640 25 11435 0 21790 2455 0.2242 BU14-77AA_sport3 1354 1530 1582 1619 49 75 27 14 1170 0 3300 200 72603 0 139958 2788 0.2343 BU14-77AA_sport2 1349 1500 1583 1619 40 100 24 17 168 0 720 35 10111 0 24513 633 50343 0.2343 BU14-77AA_sport2 1349 1500 1583 1618 42 100 24 17 168 0 720 35 10111 0 24513 630 0.2343 BU14-77AA_sport2 1349 1500 1583 1618 42 100 24 17 168 0 720 39 11777 0 31187 747 0.2168 BU14-77AA_sport2 1349 1500 1583 1618 42 100 24 18 205 0 500 39 11777 0 31187 747 0.2168 BU14-77AA_sport2 1349 1500 1583 1612 44 100 24 18 800 270 800 39 11777 0 31187 747 0.2168 BU14-77AA_sport3 1350 1350 1581 1622 43 100 22 18 400 0 800 20 8049 0 3548 400 0.206 BU14-77AA_sport3 1350 1350 1361 1622 45 75 22 12 600 0 1500 0 0 0 0 0 0 0 | 0.043
0.011
ernal):
n:
0.453 3
0.450 3
0.450 4
0.367 4
0.367 4
0.377 4
0.352 4
0.340 4
0.337 4
0.337 4 | | BU14-77AA_sport16 | 0.011 ernal): n: 0.453 3 0.450 3 0.450 4 0.367 4 0.367 4 0.377 4 0.352 4 0.340 4 0.337 4 0.292 4 | | BU14-77AA_sport1 | ernal): n: 0.453 3 0.450 3 0.450 4 0.367 4 0.377 4 0.352 4 0.340 4 0.337 4 0.292 4 | | BU14-77AA_sport1 | n: 0.453 3
0.450 3
0.440 4
0.367 4
0.377 4
0.352 4
0.340 4
0.337 4
0.292 4 | | BU14-77AA_sport1 1351 1530 1582 1623 46 75 24 21 1190 50 2370 250 77654 3988 89347 5583 0.502 BU14-77AA_sport2 1349 1530 1582 1622 42 75 24 18 1700 0 3150 300 97666 0 118752 5743 0.540 BU14-77AA_sport4 1351 1530 1582 1622 45 75 22 15 40 10 1500 60 30642 0 51836 957 0.320 BU14-77AA_sport8 1354 1530 1582 1622 50 75 28 14 1110 0 2750 180 73101 0 120951 2680 0.404 BU14-77AA_sport5 1352 1530 1582 1620 50 75 24 18 1750 0 5400 90 110810 0 203575 1723 0.324 BU14-77AA_sport9 1350 1500 1583 1623 44 100 24 16 190 0 640 25 11435 0 21790 425 0.297 BU14-77AA_sport7 1354 1530 1582 1619 49 75 27 14 1170 0 3300 200 72603 0 139958 2978 0.355 BU14-77AA_sport2 1349 1500 1583 1619 44 100 24 17 168 0 720 35 10111 0 24513 633 0.233 BU14-77AA_sport2 1349 1500 1583 1619 44 100 24 17 168 0 720 35 10111 0 24513 633 0.233 BU14-77AA_sport1 1349 1500 1583 1618 42 100 24 18 205 0 950 39 11777 0 31187 747 0.216 BU14-77AA_sport1 1347 1500 1583 1622 44 100 22 18 480 0 2700 90 25675 0 82083 1723 0.178 BU14-77AA_sport1 1353 1530 1581 1622 45 75 22 12 6620 0 4300 100 36748 0 138999 1276 0.144 BU14-77AA_sport1 1353 1530 1581 1622 45 75 22 12 6620 0 4300 100 36748 0 138999 1276 0.144 BU14-77AA_sport2 1349 1500 1583 1622 44 100 21 16 157 0 1150 20 9449 0 35484 340 0.137 BU14-77AA_sport1 1353 1530 1581 1622 45 75 22 12 6620 0 4300 100 36748 0 138999 1276 0.144 BU14-77AA_sport1 1353 1530 1581 1622 45 75 22 12 6620 0 4300 100 36748 0 138999 1276 0.144 BU14-78A_sport2 1351 1500 1583 1650 110 180 50 50 4250 1100 7600 0 615760 210568 481233 0 0.559 BU14-78A_sport2 1354 1500 1603 1650 110 180 50 50 4250 1100 7600 0 615760 210568 481233 0 0.559 BU14-78A_sport2 1340 1500 1603 1650 110 170 53 50 3000 900 5400 0 434654 162711 362444 0 0.5556 BU14-78A_sport1 1352 1540 1500 1603 1650 110 170 53 50 3000 900 5400 0 434654 162711 362444 0 0.5556 BU14-78A_sport1 1352 1540 1578 1612 53 80 20 28 880 230 6700 580 7326 19568 210487 17271 0.149 | 0.453 3
0.450 3
0.440 4
0.367 4
0.377 4
0.352 4
0.340 4
0.337 4
0.292 4 | | BU14-77AA_sport1 1351 1530 1582 1623 46 75 24 21 1190 50 2370 250 77654 3988 89347 5583 0.502 BU14-77AA_sport2 1349 1530 1582 1622 42 75 24 18 1700 0 3150 300 97666 0 118752 5743 0.540 BU14-77AA_sport4 1351 1530 1582 1622 45 75 22 15 4 18 1700 0 1500 60 30642 0 51836 957 0.320 BU14-77AA_sport8 1354 1530 1582 1622 50 75 28 14 1110 0 2750 180 73101 0 120951 2680 0.404 BU14-77AA_sport5 1352 1530 1582 1620 50 75 24 18 1750 0 5400 90 110810 0 203575 1723 0.324 BU14-77AA_sport9 1350 1500 1583 1623 44 100 24 16 190 0 640 25 11435 0 21790 425 0.297 BU14-77AA_sport7 1354 1530 1582 1619 49 75 27 14 1170 0 3300 200 72603 0 139958 2978 0.355 BU14-77AA_sport2 1349 1500 1583 1619 44 100 24 17 168 0 720 35 10111 0 24513 633 0.233 BU14-77AA_sport2 1349 1500 1583 1619 44 100 24 17 168 0 720 35 10111 0 24513 633 0.233 BU14-77AA_sport1 1349 1500 1583 1618 42 100 24 18 205 0 950 39 11777 0 31187 747 0.216 BU14-77AA_sport1 1354 1500 1583 1622 44 75 20 18 480 0 2700 90 25675 0 82083 1723 0.178 BU14-77AA_sport1 1355 1530 1582 1622 45 75 22 12 6620 0 4300 100 36748 0 138999 1276 0.144 BU14-77AA_sport1 1353 1530 1581 1622 45 75 22 12 6620 0 4300 100 36748 0 138999 1276 0.144 BU14-77AA_sport2 1354 1500 1583 1622 44 100 21 16 157 0 1150 20 9449 0 35484 340 0.137 BU14-77AA_sport1 1353 1530 1581 1622 45 75 22 12 6620 0 4300 100 36748 0 138999 1276 0.144 BU14-78A_sport1 1353 1530 1581 1622 45 75 22 12 6620 0 4300 100 36748 0 138999 1276 0.144 BU14-78A_sport2 1354 1500 1583 1650 110 180 50 50 50 4250 1100 7600 0 615760 210568 481233 0 0.559 BU14-78A_sport2 1354 1500 1603 1650 110 180 50 50 50 4250 1100 7600 0 615760 210568 481233 0 0.559 BU14-78A_sport2 1354 1500 1603 1650 110 170 53 50 3000 900 5400 0 434654 162711 362444 0 0.556 BU14-78A_sport1 1352 1540 1500 1603 1650 110 170 53 50 3000 900 5400 0 434654 162711 362444 0 0.5566 BU14-78A_sport1 1352 1540 1500 1603 1650 110 170 53 50 3000 900 5400 0 434654 162711 362444 0 0.5566 BU14-78A_sport1 1352 1540 1578 1612 53 80 20 28 880 230 6700 580 7326 19568 210487 1727 1 0.149 | 0.450 3
0.440 4
0.367 4
0.377 4
0.352 4
0.340 4
0.337 4
0.292 4 | | BU14-77AA_spot2 1349 1530 1582 1622 42 75 24 18 1700 0 3150 300 97666 0 118752 5743 0.540 BU14-77AA_spot4 1351 1530 1582 1624 45 75 22 15 480 0 1500 60 30642 0 51836 957 0.320 BU14-77AA_spot8 1354 1530 1582 1622 50 75 28 14 1110 0 2750 180 73101 0 120951 2680 0.404 BU14-77AA_spot5 1352 1530 1582 1620 50 75 24 18 1750 0 5400 90 110810 0 203575 1723 0.324 BU14-77AA_spot19 1350 1500 1583 1623 44 100 24 16 190 0 640 25 11435 0 21790 425 0.297 BU14-77AA_spot6 1347 1530 1582 1619 49 75 27 14 1170 0 3300 200 72603 0 139958 2978 0.355 BU14-77AA_spot6 1347 1530 1574 1613 50 75 22 17 5650 0 25000 1700 357759 0 836035 30734 0.226 BU14-77AA_spot20 1349 1500 1583 1619 44 100 24 17 168 0 720 35 10111 0 24513 633 0.233 BU14-77AA_spot19 1350 1500 1583 1619 44 100 24 17 168 0 720 35
10111 0 24513 633 0.238 BU14-77AA_spot15 1355 1530 1582 1620 44 75 20 18 480 0 2700 90 25675 0 82083 1723 0.178 BU14-77AA_spot18 1347 1500 1583 1622 43 100 24 18 205 0 950 39 11777 0 31187 747 0.216 BU14-77AA_spot18 1347 1500 1583 1622 44 100 24 18 205 0 950 39 11777 0 31187 747 0.216 BU14-77AA_spot18 1347 1500 1583 1622 44 100 24 18 205 0 950 39 11777 0 31187 747 0.216 BU14-77AA_spot18 1345 1500 1583 1622 44 100 24 18 170 0 850 23 8145 0 26528 440 0.200 BU14-77AA_spot18 1345 1500 1583 1622 44 100 21 16 157 0 1150 20 9449 0 35484 340 0.137 BU14-77AA_spot11 1353 1530 1581 1622 45 75 22 12 620 0 4300 100 36748 0 13899 1276 0.144 BU14-77AA_spot11 1353 1530 1581 1622 45 75 22 12 620 0 4300 100 36748 0 13899 1276 0.144 BU14-77AA_spot11 1353 1530 1581 1620 45 75 22 12 620 0 4300 100 36748 0 13899 1276 0.144 BU14-77AA_spot11 1353 1530 1581 1620 45 75 22 12 620 0 4300 100 36748 0 13899 1276 0.144 BU14-77AA_spot11 1353 1530 1581 1620 45 75 22 12 620 0 4500 | 0.440 4
0.367 4
0.377 4
0.352 4
0.340 4
0.337 4
0.292 4 | | BU14-77AA_spot8 | 0.367 4
0.377 4
0.352 4
0.340 4
0.337 4
0.292 4 | | BU14-77AA_spott5 1352 1530 1582 1620 50 75 24 18 1750 0 5400 90 110810 0 203575 1723 0.324 BU14-77AA_spott9 1350 1500 1583 1623 44 100 24 16 190 0 640 25 11435 0 21790 425 0.297 BU14-77AA_spott0 1354 1530 1582 1619 49 75 27 14 1170 0 3300 200 72603 0 139958 2978 0.355 BU14-77AA_spot6 1347 1530 1582 1619 49 75 27 14 1170 0 3300 200 72603 0 139958 2978 0.355 BU14-77AA_spot6 1347 1530 1583 1619 44 100 24 17 168 0 720 35 10111 0 24513 633 0.233 BU14-77AA_spot21 1349 1500 1583 1619 44 100 24 17 168 0 720 35 10111 0 24513 633 0.233 BU14-77AA_spot15 1355 1530 1582 1620 44 75 20 18 480 0 2700 950 39 11777 0 31187 747 0.216 BU14-77AA_spot15 1355 1530 1582 1620 44 75 20 18 480 0 2700 90 25675 0 82083 1723 0.178 BU14-77AA_spot18 1347 1500 1583 1622 43 100 22 18 170 0 850 23 8145 0 26528 440 0.200 BU14-77AA_spot18 1347 1500 1583 1622 44 100 21 16 157 0 1150 20 9449 0 35484 340 0.137 BU14-77AA_spot11 1353 1530 1581 1622 44 100 21 16 157 0 1150 20 9449 0 35484 340 0.378 BU14-77AA_spot11 1353 1530 1581 1622 44 100 21 16 157 0 1150 20 9449 0 35484 340 0.378 BU14-77AA_spot11 1353 1530 1581 1622 45 75 22 12 620 0 4300 100 36748 0 13899 1276 1.44 | 0.352 4
0.340 4
0.337 4
0.292 4 | | BU14-77AA_sport19 1350 1500 1583 1623 44 100 24 16 190 0 640 25 11435 0 21790 425 0.297 BU14-77AA_sport7 1354 1530 1582 1619 49 75 27 14 1170 0 3300 200 72603 0 139958 2978 0.355 BU14-77AA_sport6 1347 1530 1574 1613 50 75 22 17 5650 0 25000 1700 357759 0 836035 30734 0.226 BU14-77AA_sport2 1349 1500 1583 1618 42 100 24 17 168 205 0 950 39 11777 0 31187 747 0.216 BU14-77AA_sport15 1355 1530 1582 1620 44 75 20 18 480 0 2700 90 25675 0 82083 1723 0.178 BU14-77AA_sport2 1349 1500 1583 1612 43 100 22 18 480 0 2700 90 25675 0 82083 1723 0.178 BU14-77AA_sport15 1355 1530 1582 1622 43 100 22 18 170 0 850 23 8145 0 26528 440 0.200 BU14-77AA_sport2 1351 1500 1583 1622 44 100 21 16 157 0 1150 20 9449 0 35484 340 0.337 BU14-77AA_sport1 1353 1530 1581 1622 45 75 22 12 620 0 4300 100 36748 0 13899 1276 0.144 BU14-77AA_sport1 1353 1530 1581 1622 45 75 22 12 620 0 4300 100 36748 0 13899 1276 0.144 BU14-77AA_sport1 1353 1530 1581 1622 45 75 22 12 620 0 4300 100 36748 0 13899 1276 0.144 BU14-77AA_sport1 1353 1530 1581 1622 45 75 22 12 620 0 4300 100 36748 0 13899 1276 0.144 BU14-77AA_sport1 1353 1530 1581 1500 1583 1622 45 75 22 12 620 0 4300 100 36748 0 13899 1276 0.144 BU14-77AA_sport1 1353 1530 1581 1500 1583 1581 1500 1583 1581 1500 1583 1581 1500 1583 1581 1500 1583 1581 1500 1583 1581 1500 1583 1581 1500 1583 1581 1500 1583 1581 1500 1583 1581 1500 1583 1581 1500 1583 1581 1500 1583 1581 1500 1 | 0.340
0.337
0.292 | | BU14-77AA_spot7 1354 1530 1582 1619 49 75 27 14 1170 0 3300 200 72603 0 139958 2978 0.355 BU14-77AA_spot6 1347 1530 1574 1613 50 75 22 17 5650 0 25000 1700 357759 0 836035 30734 0.226 BU14-77AA_spot20 1349 1500 1583 1619 44 100 24 17 168 0 720 35 10111 0 24513 633 0.233 BU14-77AA_spot21 1349 1500 1583 1619 44 100 24 17 168 0 720 35 10111 0 24513 633 0.233 BU14-77AA_spot15 1355 1530 1582 1620 44 75 20 18 480 0 2700 90 25675 0 82083 1723 0.178 BU14-77AA_spot18 1347 1500 1583 1622 43 100 22 18 170 0 850 23 8145 0 26528 440 0.200 BU14-77AA_spot11 1353 1530 1582 1622 44 100 21 16 157 0 1150 20 9449 0 35484 340 0.137 BU14-77AA_spot11 1353 1530 1581 1622 45 75 22 12 620 0 4300 100 36748 0 138999 1276 0.144 BU14-77AA_spot11 1353 1530 1581 1622 45 75 22 12 620 0 4300 100 36748 0 138999 1276 0.144 BU14-77AA_spot11 1353 1530 1581 1622 45 75 22 12 620 0 4300 100 36748 0 138999 1276 0.144 BU14-77AA_spot11 1353 1530 1581 1622 45 75 22 12 620 0 4300 100 36748 0 138999 1276 0.144 BU14-77AA_spot11 1353 1530 1581 1622 45 75 22 12 620 0 4300 100 36748 0 138999 1276 0.144 BU14-77AA_spot11 1353 1530 1581 1622 45 75 22 12 620 0 4300 100 36748 0 138999 1276 0.144 BU14-77AA_spot11 1353 1530 1581 1622 45 75 22 12 620 0 4300 100 36748 0 138999 1276 0.144 BU14-77AA_spot11 1353 1530 1581 1622 45 75 22 12 620 0 4300 100 36748 0 138999 1276 0.144 BU14-77AA_spot11 1353 1530 1581 1500 1633 1650 100 1630 1650 110 1600 1600 1600 1600 1600 1600 | 0.337 4
0.292 4 | | BU14-77AA_spot20 1349 1500 1583 1619 44 100 24 17 168 0 720 35 10111 0 24513 633 0.233 BU14-77AA_spot21 1349 1500 1583 1618 42 100 24 18 205 0 950 39 11777 0 31187 747 0.216 BU14-77AA_spot15 1355 1530 1582 1620 44 75 20 18 480 0 270 90 25675 0 82083 1723 0.178 BU14-77AA_spot18 1347 1500 1583 1622 43 100 22 18 170 0 850 23 8145 0 26528 440 0.200 BU14-77AA_spot11 1353 1530 1581 1622 44 100 21 16 157 0 1150 20 9449 0 35484 340 0.378 BU14-77AA_spot11 1353 1530 1581 1622 44 100 21 16 157 0 1150 20 9449 0 35484 340 0.378 BU14-77AA_spot11 1353 1530 1581 1622 45 75 22 12 620 0 4300 100 36748 0 13899 1276 0.144 means 1354 1500 1583 1622 44 100 21 16 157 0 1150 20 9449 0 35484 340 0.303 BU14-77AA_spot11 1353 1530 1581 1622 45 75 22 12 620 0 4300 100 36748 0 13899 1276 0.144 means 1354 1500 1583 1622 45 75 22 12 620 0 4300 100 36748 0 13899 1276 0.144 means 1354 1500 1583 1622 45 75 22 12 620 0 4300 100 36748 0 13899 1276 0.144 means 1354 1500 1583 1622 45 75 22 12 620 0 4300 100 36748 0 13899 1276 0.144 means 1354 1560 1576 1576 1576 1576 1576 1576 1576 1576 | 0.292 | | BU14-77AA_spot20 1349 1500 1583 1619 44 100 24 17 168 0 720 35 10111 0 24513 633 0.233 BU14-77AA_spot21 1349 1500 1583 1618 42 100 24 18 205 0 950 39 11777 0 31187 747 0.216 BU14-77AA_spot15 1355 1530 1582 1620 44 75 20 18 480 0 2700 90 25675 0 82083 1723 0.178 BU14-77AA_spot12 1351 1500 1583 1622 43 100 22 18 170 0 850 23 8145 0 26528 440 0.200 BU14-77AA_spot12 1351 1500 1583 1622 44 100 21 16 157 0 1150 20 9449 0 3548 340 0.137 BU14-77AA_spot11 1353 1530 1581 1622 45 75 22 12 620 0 4300 100 36748 0 13899 1276 0.144 means 100 127 158 158 1590 1583 1620 149 159 159 158 159 159 159 159 159 159 159 159 159 159 | D | | BU14-77AA_spot12 1349 1500 1583 1618 42 100 24 18 205 0 950 39 11777 0 31187 747 0.216 BU14-77AA_spot15 1355 1530 1582 1620 44 75 20 18 480 0 2700 90 25675 0 82083 1723 0.178 BU14-77AA_spot18 1347 1500 1583 1622 43 100 22 18 170 0 850 23 8145 0 26528 440 0.200 BU14-77AA_spot12 1351 1500 1583 1622 44 100 21 16 157 0 1150 20 9449 0 3548 340 0.137 BU14-77AA_spot11 1353 1530 1581 1622 45 75 22 12 620 0 4300 100 36748 0 1889 1276 0.144 means 1585 1586 1586 1586 1586 1586 1586 1586 | | | BU14-77AA_spot15 1355 1530 1582 1620 44 75 20 18 480 0 2700 90 25675 0 82083 1723 0.178 BU14-77AA_spot18 1347 1500 1583 1622 43 100 22 18 170 0 850 23 8145 0 26528 440 0.200 BU14-77AA_spot12 1351 1500 1583 1622 44 100 21 16 157 0 1150 20 9449 0 35484 340 0.137 BU14-77AA_spot11 1353 1530 1581 1622 45 75 22 12 620 0 4300 100 36748 0 13899 1276 0.144 0.200 1347 BU14-77AA_spot11 1353 1530 1581 1622 45 75 22 12 620 0 4300 100 36748 0 13899 1276 0.144 1353 1530 1581 1581 1581 1581 1581 1581 1581 158 | | | BU14-77AA_spot18 | 0.269 5 | | BU14-77AA_spot12 1351 1500 1583 1622 44 100 21 16 157 0 1150 20 9449 0 3548 340 0.137 BU14-77AA_spot11 1353 1530 1581 1622 45 75 22 12 620 0 4300 100 36748 0 138999 1276 0.144 mean: 0.305 15 (internal): 0.127 15 (internal): 0.127 15 (internal): 0.033 prop. 2 SE (internal): 0.033 prop. 2 SE (internal): 0.035 0. | 0.232 | | BU14-77AA_spot11 1353 1530 1581 1622 45 75 22 12 620 0 4300 100 36748 0 138999 1276 0.144 mean: 0.305 156 156 mean: 0.305 157 158 | 0.209 | | September Sep | 0.208 | | BU14-78A_spot19 1338 1480 1607 1622 105 200 42 16 6500 1150 1800 20 968194 24599 712513 340 0.602
BU14-78A_spot25 1336 1490 1603 1650 110 180 50 50 425 1100 7600 0 615760 210568 481233 0 0.559
BU14-78A_spot23 1340 1500 1603 1650 110 170 53 50 4250 1100 7600 0 643654 162711 362444 0 0.556
BU14-78A_spot11 1352 1540 1578 1612 53 80 20 28 880 230 6700 580 73262 19568 210487 17271 0.149 | 0.323 | | BU14-78A_spot19 1338 1480 1607 1622 105 200 42 16 6500 1150 10800 20 968194 244599 712513 340 0.602 BU14-78A_spot25 1336 1490 1603 1650 110 180 50 50 4250 1100 7600 0 615760 210568 481233 0 0.5559 BU14-78A_spot23
1340 1500 1603 1650 110 170 53 50 3000 900 5400 0 434654 162711 362444 0 0.5566 BU14-78A_spot11 1352 1540 1578 1612 53 80 20 28 880 230 6700 580 73262 19568 210487 17271 0.149 | 0.082 | | BU14-78A_spot19 1338 1480 1607 1622 105 200 42 16 6500 1150 10800 20 968194 244599 712513 340 0.602 BU14-78A_spot25 1336 1490 1603 1650 110 180 50 50 4250 1100 7600 0 615760 210568 481233 0 0.559 BU14-78A_spot23 1340 1500 1603 1650 110 170 53 50 3000 900 5400 0 434654 162711 362444 0 0.556 BU14-78A_spot11 1352 1540 1578 1612 53 80 20 28 880 230 6700 580 73262 19568 210487 17271 0.149 | 0.021 | | BU14-78A_spot25 1336 1490 1603 1650 110 180 50 50 4250 1100 7600 0 615760 210568 481233 0 0.559
BU14-78A_spot23 1340 1500 1603 1650 110 170 53 50 3000 900 5400 0 434654 162711 362444 0 0.556
BU14-78A_spot11 1352 1540 1578 1612 53 80 20 28 880 230 6700 580 73262 19568 210487 17271 0.149 | | | BU14-78A_spot25 1336 1490 1603 1650 110 180 50 50 4250 1100 7600 0 615760 210568 481233 0 0.559 BU14-78A_spot23 1340 1500 1603 1650 110 170 53 50 3000 900 5400 0 434654 162711 362444 0 0.556 BU14-78A_spot11 1352 1540 1578 1612 53 80 20 28 880 230 6700 580 73262 19568 210487 17271 0.149 | n:
0.576 2 | | BU14-78A_spot23 1340 1500 1603 1650 110 170 53 50 3000 900 5400 0 434654 162711 362444 0 0.556 BU14-78A_spot11 1352 1540 1578 1612 53 80 20 28 880 230 6700 580 73262 19568 210487 17271 0.149 | 0.561 | | BU14-78A_spot11 1352 1540 1578 1612 53 80 20 28 880 230 6700 580 73262 19568 210487 17271 0.149 | 0.545 | | DUAL TOA | 0.359 | | BU14-78A_spot3 1345 1530 1575 1613 52 80 22 25 950 70 4300 300 67573 5955 148597 7976 0.221 | 0.301 | | - NG 어린 사람들은 어린 아이들은 어린 아이들은 어린 아이들은 어린 아이들은 아이들은 아이들은 아이들은 아이들은 아이들은 아이들은 아이들은 | 0.248 | | | 0.196 | | | 0.175 | | | 0.162 | | | 0.138 6 | | | 0.092 | | | 0.063 | | | 0.273 | | 1σ (internal): 0.207 | 0.175 | | 1 SE (internal): 0.057 | TERRESPOND : | | prop. 2 SE (internal and exte | | | 2014 2015 2015 4016 4020 4020 4020 4020 4020 4020 4020 402 | n: | | | 0.435 | | | 0.403 | | | 0.358 | | | 0.379 | | | 0.362 | | | | | - "TEX MONTH CONTROL TO THE TOTAL TO SEE THE TOTAL T | 0.343 | | I NGCC 가게 ^^ ^ 이렇게 되었다면 하게 가입니다. 이렇게 되었다면 하게 되었다면 다시 사람이 되었다면 되었다면 되었다면 다시 다시 아니라 바로 다시 | 0.343 | | | 200000000000000000000000000000000000000 | | | 0.375 4
0.327 4
0.332 4 | | 7. | 0.375 4
0.327 4
0.332 4
0.321 4 | | BU14-80A_spot11 1353 1530 1583 1620 46 80 23 18 1570 0 6570 600 91460 0 214365 11486 0.239 | 0.375 4
0.327 4
0.332 4 | | BU14-80A_spot4 | 1353 | 1530 | 1583 | 1623 | 46 | 80 | 22 | 12 | 2350 | 0 | 9300 | 550 | 125930 | 0 | 311005 | 7019 | 0.253 | 0.284 | 510 | |-----------------------------------|------|------|------|------|----|----|----|----|------|-----|-------|------|--------|-------|------------|-----------|---------|----------|-----| | BU14-80A_spot3 | 1354 | 1530 | 1583 | 1622 | 40 | 80 | 23 | 18 | 1440 | 0 | 5300 | 300 | 75867 | 0 | 185296 | 5743 | 0.272 | 0.284 | 516 | | | | | | | | | | | • : | | | | | | | mean: | 0.353 | 0.345 | 472 | | | | | | | | | | | | | | | | | 1σ (ir | ternal): | 0.081 | 0.042 | 26 | | | | | | | | | | | | | | | | | 1 SE (ir | nternal): | 0.021 | 0.011 | 7 | | | | | | | | | | | | | | | | | prop. 2 SE | (interna | and ext | ternal): | 29 | n: | 15 | | BU14-81_spot9 | 1363 | 1540 | 1582 | 1621 | 64 | 70 | 22 | 14 | 410 | 110 | 1930 | 150 | 34562 | 8189 | 66696 | 2233 | 0.212 | 0.334 | 445 | | BU14-81_spot10 | 1365 | 1540 | 1582 | 1622 | 64 | 70 | 22 | 14 | 360 | 50 | 1920 | 140 | 30347 | 3722 | 66350 | 2084 | 0.188 | 0.307 | 467 | | BU14-81_spot15 | 1360 | 1530 | 1581 | 1621 | 63 | 80 | 22 | 17 | 115 | 30 | 760 | 30 | 10645 | 2552 | 25415 | 542 | 0.151 | 0.291 | 473 | | BU14-81_spot14 | 1360 | 1530 | 1581 | 1621 | 65 | 70 | 21 | 20 | 155 | 50 | 1110 | 60 | 14804 | 3722 | 35433 | 1276 | 0.140 | 0.287 | 474 | | BU14-81_spot4 | 1352 | 1530 | 1581 | 1620 | 45 | 75 | 22 | 25 | 920 | 150 | 2400 | 270 | 44028 | 11964 | 82938 | 7178 | 0.383 | 0.328 | 498 | | BU14-81_spot11 | 1363 | 1540 | 1581 | 1622 | 75 | 80 | 23 | 7 | 110 | 10 | 785 | 15 | 10029 | 851 | 28361 | 112 | 0.140 | 0.260 | 503 | | BU14-81_spot5 | 1353 | 1530 | 1582 | 1620 | 47 | 75 | 22 | 20 | 700 | 50 | 2850 | 100 | 39996 | 3988 | 98489 | 2127 | 0.246 | 0.284 | 508 | | BU14-81_spot3 | 1352 | 1520 | 1581 | 1621 | 45 | 70 | 20 | 20 | 730 | 0 | 2750 | 150 | 34935 | 0 | 86394 | 3190 | 0.265 | 0.281 | 517 | | BU14-81_spot13 | 1357 | 1540 | 1580 | 1621 | 60 | 80 | 19 | 10 | 160 | 0 | 1570 | 60 | 14106 | 0 | 45344 | 638 | 0.102 | 0.235 | 518 | | BU14-81_spot2 | 1351 | 1520 | 1582 | 1619 | 45 | 70 | 21 | 18 | 940 | 50 | 3850 | 150 | 44985 | 3722 | 126999 | 2871 | 0.244 | 0.257 | 537 | | BU14-81_spot8 | 1365 | 1540 | 1582 | 1619 | 58 | 80 | 21 | 21 | 180 | 60 | 1370 | 60 | 12692 | 5105 | 45192 | 1340 | 0.131 | 0.214 | 550 | | BU14-81_spot6 | 1362 | 1530 | 1582 | 1620 | 65 | 75 | 20 | 20 | 135 | 5 | 1830 | 0 | 10667 | 399 | 57491 | 0 | 0.074 | 0.157 | 593 | | BU14-81_spot12 | 1357 | 1540 | 1580 | 1620 | 50 | 80 | 20 | 11 | 190 | 0 | 2450 | 90 | 13477 | 0 | 76969 | 1053 | 0.078 | 0.147 | 605 | | BU14-81_spot7 | 1355 | 1530 | 1582 | 1621 | 55 | 75 | 19 | 12 | 250 | 5 | 4670 | 80 | 16715 | 399 | 139377 | 1021 | 0.054 | 0.106 | 641 | | BU14-81_spot1 | 1352 | 1520 | 1574 | 1617 | 70 | 70 | 18 | 16 | 950 | 200 | 28500 | 1000 | 87589 | 14889 | 805819 | 17016 | 0.033 | 0.096 | 645 | | Total Section of Breaks (Section) | | | | | | | | | | | | | | | | mean: | 0.163 | 0.239 | 532 | | | | | | | | | | | | | | | | | 1σ (ir | nternal): | 0.091 | 0.075 | 61 | | | | | | | | | | | | | | | | | 1 SE (ir | ternal): | 0.024 | 0.019 | 16 | | | | | | | | | | | | | | | | 1 | orop. 2 SE | (interna | and ext | ternal): | 41 | | | | | | | | | | | | | | | | * | 8 8 | 500 | | n: | 15 | **Discussion S2:** Methodology, sample descriptions, and supporting data for thermobarometry Major-element phase compositions were collected using a five-spectrometer JEOL 8500F field emission electron microprobe at Washington State University using synthetic and natural standards for calibration and a ZAF correction routine. Quantitative wavelength dispersive spectroscopy (WDS) analyses on garnet, plagioclase, K-feldspar, biotite, and muscovite were made from core to rim within individual crystals to obtain quantitative spot analyses for thermobarometric calculations and also to check for zoning (Tables S3-S5; see Figure 9 in the text for quantitative element profiles). Operating conditions for WDS analyses were 15 kV accelerating voltage, 20 nA beam current, and 2 μm beam size (except for plagioclase where the beam was spread out to 5 μm). Representative compositions of garnet, biotite and muscovite, and feldspar are shown in Tables S3, S4, and S5, respectively. Peak temperatures for all five samples were calculated using garnet-biotite exchange thermometry, specifically the 5AV model calibration of Holdaway (2000). Petrographic inspection and assessment of the zoning across the minerals was used to determine which compositions of the garnet and biotite were used for the analyses. The garnet composition with the lowest Mn and Fe# was combined with matrix biotite for the calculations; biotite did not show any zoning. Two-sigma errors are estimated at \pm 25 °C (Holdaway, 2000). Peak pressures for samples BU13-104C, BU13-131B, and BU13-130B were calculated using the program *THERMOCALC* using the internally-consistent dataset of Holland and Powell (2011) (version 3.33; Powell and Holland, 1994). Below, individual samples are described. Greater Himalayan quartzite sample BU13-103A contains quartz, biotite, muscovite, and garnet. The garnet are subhedral and contain inclusions of quartz, ilmenite, zircon, and monazite. Pyrope and almandine show a concave down, bell pattern, with X_{Mg} and X_{Fe} varying from 0.09 and 0.82 in the core to 0.07 and 0.80 in the rim, respectively. Grossular and spessartine show the opposite pattern: X_{Ca} varies from 0.06 to 0.09 from core to rim. Spessartine is more weakly zoned, with X_{Mn} varying from 0.03 to 0.04. Biotite is unzoned, but shows compositional differences based on textural location. Matrix biotite reveals Fe# of 0.72–0.75 and Ti of 0.18–0.23 (atoms per formula unit (apfu) normalized on the basis of 11 O atoms), whereas biotite adjacent to garnet is variable (Fe# = 0.59–0.77 and Ti = 0.09–0.23 apfu). Muscovite shows a similar trend: matrix muscovite has Fe# = 0.66–0.70 and Ti = 0.04–0.05 versus muscovite adjacent to garnet is more variable (Fe# = 0.59–0.74 and Ti = 0.05–0.06). Greater Himalayan metapelite sample BU13-104C consists of biotite, muscovite, and sillimanite layers that alternate with quartz-, plagioclase-, and K-feldspar-rich layers to define a strong foliation. Garnet is subhedral, resorbed, and contains quartz, biotite, ilmenite, monazite, and zircon inclusions. Garnet reveals a flat profile in the core, but retrogression effects toward the rim. Almandine decreases slightly from core ($X_{Fe} = 0.76$) to mantle ($X_{Fe} = 0.75$) and continues to decrease at the rim ($X_{Fe} = 0.72$). Pyrope shows a similar pattern with homogeneous $X_{Mg} = 0.15$ from core to mantle and a decrease to $X_{Mg} = 0.10$ at the rim. Spessartine shows the opposite pattern, with a homogeneous $X_{Mn} = 0.06$ between the core and mantle, and an increase in $X_{Mn} = 0.14$ at the rim. Grossular is homogeneous across the entire crystal, from $X_{Ca} = 0.03 - 0.04$. Biotite inclusions have lower Fe# (0.46–0.50) in comparison to matrix biotite (0.62–0.59). Titanium ranges from 0.10–0.17 apfu. Muscovite is also unzoned; Fe# ranges from 0.51–0.55 and X_{Na} from 0.07–0.08. Both plagioclase and K-feldspar are found in the sample, and both are unzoned. Plagioclase ranges from A_{19-23} , whereas the K-feldspar has A_{19-20} . Deshichilling Formation siliceous gneiss sample BU13-126A is fine-grained and mainly consists of quartz and biotite, with lesser muscovite, plagioclase, and
tourmaline. Garnet shows signs of late retrogression affecting ~100 μ m closest to the rim; the garnet rims are skeletal. Almandine increases from core ($X_{Fe} = 0.33$) to rim ($X_{Fe} = 0.38$) before decreasing at the near rim to $X_{Fe} = 0.36$. Both spessartine and pyrope decrease from core to rim, from $X_{Mn} = 0.44$ to 0.38103 and $X_{Mg} = 0.02$ to 0.01, respectively. Spessartine increases at the near rim to $X_{Mn} = 0.45-0.43$, 104 whereas pyrope remains constant. The grossular zonation is more complicated. The X_{Ca} is 105 relatively constant in the core of the grains, from 0.22–0.19, but increases to $X_{Ca} = 0.26$ before 106 decreasing to 0.18–0.16. The X_{Ca} then increases to 0.20 at the rim likely due to late retrogression. 107 Biotite is unzoned, with Fe# = 0.27-0.29 and Ti = 0.07-0.13 apfu. Muscovite is minor in 108 comparison to biotite and has variable composition, from Fe# = 0.55-0.71 and $X_{Na} = 0.02-0.03$. 109 Plagioclase is also variable (An_{16–30}) but does not show zoning. 110 Chekha Formation fine-grained metapelite sample BU13-130B consists of biotite, 111 muscovite, and sillimanite that define a strong schistosity. Quartz, plagioclase, and garnet are 112 also present. Quartz and biotite reveal inclusion trails that are sub-parallel to the main foliation. 113 The garnet shows signs of late retrogression affecting ~150 µm of the garnet closest to the rim. 114 Almandine and spessartine decrease slightly from core to rim, X_{Fe} from 0.77 to 0.76 and X_{Mn} from 0.10 to 0.09, respectively, before increasing in the near rim back to their core values. Grossular shows the opposite pattern: $X_{Ca} = 0.04$ in the core to $X_{Ca} = 0.05$ toward the rim to X_{Ca} = 0.04 in the near rim. Pyrope is flat across the crystals at 0.10 before decreasing slightly to 0.09 at the near rim. Biotite is unzoned but heterogeneous across the sample. Biotite included within and adjacent to garnet have more variable Fe# (0.53-0.65) and Ti (0.10-0.16 apfu) in 121 comparison to matrix garnet (Fe# = 0.60 and Ti = 0.12-0.15). Muscovite shows similar trends: matrix muscovite is unzoned and has Fe# = 0.49-0.52 and $X_{Na} = 0.13-0.15$, whereas muscovite included in garnet has higher Fe# (0.54–0.55). Muscovite adjacent to garnet has Fe# from 0.49 to 124 0.57. Plagioclase is unzoned (An_{21-23}). 115 118 119 120 122 123 125 126 127 128 129 130 131 132 133 Chekha Formation garnet-sillimanite schist BU13-131B is very similar to sample BU13-130B, with a strong schistosity defined by mica and sillimanite, with quartz and plagioclase defining the other main matrix phases. Garnet is minor in the sample and is anhedral with skeletal rims affecting ~250 μ m closest to the rim. Spessartine is homogeneous across the entire grain ($X_{Mn} = 0.12$). Almandine is homogeneous in the core ($X_{Fe} = 0.73$). It decreases slightly to $X_{Fe} = 0.72$ toward the rim before increasing to $X_{Fe} = 0.74$ in the rim. Grossular shows the opposite pattern: $X_{Ca} = 0.04$ in the core to $X_{Ca} = 0.05$ toward the near rim to $X_{Ca} = 0.04$ in the rim. Pyrope is flat across the crystals at 0.11 before decreasing slightly to 0.10 at the rim. Biotite and muscovite are unzoned and homogeneous across the samples. Biotite has Fe# = 0.54–0.61 and Ti of 0.13–0.16 apfu. For muscovite, Fe# is from 0.45 to 0.52, and X_{Na} shows a narrow range of 0.15 to 0.19. Plagioclase is also unzoned (An_{23–26}). **Table S3:** Representative microprobe composition of garnet from Dang Chu samples. | Table S3: Repr Sample position SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Cr ₂ O ₃ Na ₂ O K ₂ O | esentative micro BU13-103A core 37.00 bdl 21.00 36.60 1.42 2.24 2.15 0.03 bdl 0.01 | rim 37.09 bdl 21.12 35.84 1.80 1.86 2.92 0.02 bdl 0.01 | Table S3: Representative microprobe composition of garnet from Dang Chu samples Sample BU13-103A BU13-103A BU13-104C BU13-104C Since rim core rim SiO2 37.00 37.09 37.34 37.28 TiO2 bdl bdl 0.06 0.05 N2O3 21.00 21.12 20.49 20.93 N2O3 35.84 34.28 32.38 FeO 36.60 35.84 34.29 32.38 MMO 1.42 1.86 3.84 2.59 CaO 2.15 2.92 1.24 1.13 CaO 2.15 2.92 1.24 1.13 Cr _C O3 0.03 0.02 0.01 bd Na ₂ O bdl bdl 0.01 bd | Chu samples BU13-104C rim 0.02 20.93 32.39 6.30 2.55 1.13 0.01 bdl | BU13-126A
core
37.29
0.15
20.73
14.86
19.11
0.43
7.34
0.02
bdl
0.01 | BU13-126A
near rim
37.58
0.12
20.91
15.95
16.95
0.31
8.53
0.01
bdl | BU13-126A
rim
37.10
0.11
21.19
16.02
18.86
0.17
7.05
0.01
bdl
0.02 | |---|---|--|--|--|--|--|---| | K ₂ O | 0.01 | 0.01 | 0.01 | bdl | 0.01 | 0.01 | 0.02 | | Total Cations per 12 oxygen | 100.45 | 100.66 | 99.89 | 100.61 | 99.94 | 100.38 | 100.53 | | A Si | | 2.99
2.01 | 3.01
1.95 | 3.00
1.99 | 3.01
1.97 | 3.01
1.98 | 2.99
2.01 | | ∄ ; | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | | Fe | 2.47 | 2.41 | 2.31 | 2.18 | 1.00 | 1.07 | 1.08 | | M _D C | 0.00
0.10 | 0.00
0.12 | 0.00
0.18 | 0.00
0.43 | 0.00
1.31 | 0.00
1.15 | 0.00
1.29 | | Mg | 0.27 | 0.22 | 0.46 | 0.31 | 0.05 | 0.04 | 0.02 | | N _a C _a | 0.19 | 0.25 | 0.11 | 0.10 | 0.64 | 0.73 | 0.61 | | * | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Total | 8.01 | 8.01 | 8.02 | 8.00 | 7.99 | 7.99 | 8.00 | | X_{Fe} | 0.82 | 0.80 | 0.76 | 0.72 | 0.33 | 0.36 | 0.36 | | X _{Mn} | 0.03 | 0.04 | 0.06 | 0.14 | 0.44 | 0.38 | 0.43 | | X _{Mg} | 0.09 | 0.07 | 0.15 | 0.10 | 0.02 | 0.01 | 0.01 | | < | 0.06 | 0 08 | 0.04 | 0.03 | 0.21 | 0.24 | 0.20 | | ^ Ca | | 0.00 | 77.0 | 0.00 | | | | | 0.89 | 0.05 | 0.10 | 0.09 | 0.76 | 8.01 | 0.00 | 0.00 | 0.14 | 0.30 | 0.29 | 0.00 | 2.30 | 0.00 | 2.02 | 2.98 | 100.52 | 0.01 | bdl | 0.01 | 1.60 | 2.47 | 4.19 | 34.10 | 21.21 | 0.02 | 36.91 | near rim | BU13-130B | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|--------|------|------|------|------|------|------|-------|-------|------|-------|----------|-----------| | 0.89 | 0.04 | 0.09 | 0.10 | 0.77 | 8.00 | 0.00 | 0.00 | 0.13 | 0.27 | 0.29 | 0.00 | 2.31 | 0.00 | 2.01 | 2.99 | 100.40 | 0.01 | 0.01 | bdl | 1.49 | 2.28 | 4.18 | 34.25 | 21.07 | 0.02 | 37.09 | rim | BU13-130B | | 0.87 | 0.04 | 0.11 | 0.12 | 0.73 | 8.01 | 0.00 | 0.00 | 0.13 | 0.32 | 0.37 | 0.00 | 2.20 | 0.00 | 2.00 | 2.99 | 100.75 | 0.01 | bdl | bdl | 1.47 | 2.70 | 5.42 | 32.77 | 21.12 | 0.02 | 37.25 | core | BU13-131B | | 0.87 | 0.05 | 0.11 | 0.12 | 0.72 | 8.00 | 0.00 | 0.00 | 0.16 | 0.33 | 0.37 | 0.00 | 2.15 | 0.00 | 1.99 | 3.00 | 100.17 | bdl | bdl | 0.01 | 1.83 | 2.71 | 5.40 | 31.98 | 20.97 | 0.03 | 37.25 | near rim | BU13-131B | | 0.88 | 0.04 | 0.10 | 0.12 | 0.74 | 8.00 | 0.00 | 0.00 | 0.13 | 0.30 | 0.37 | 0.00 | 2.21 | 0.00 | 2.00 | 3.00 | 100.59 | bdl | bdl | 0.02 | 1.46 | 2.50 | 5.43 | 32.85 | 21.08 | bdl | 37.25 | rim | BU13-131B | **Table S4** (following page): Representative microprobe composition of biotite and muscovite from Dang Chu samples. | Sample | BU13-126A
biotite | BU13-103A
biotite | BU13-104C
biotite | BU13-130B
biotite | Sample BU13-126A BU13-103A BU13-104C BU13-130B BU13-131B biotite biotite biotite | BU13-126A
muscovite | BU13-103A
muscovite | BU13-104C
muscovite | BU13-130B
muscovite | |--------------------------------|-----------------------------|----------------------|----------------------|----------------------|--|------------------------|------------------------|------------------------|------------------------| | 61 | matrix × | | SiO ₂ | 37.66 | 34.20 | 34.42 | 35.23 | 35.13 | 45.12 | 45.08 | | 45.17 | | TiO ₂ | 1.26 | 3.14 | 2.51 | 1.90 | 2.77 | 0.44 | 1.47 | | 0.66 | | Al_2O_3 | 20.27 | 17.51 | 20.59 | 18.41 | 18.72 | 28.91 | 35.01 | ω | 6.07 | | FeO | 18.67 | 24.34 | 19.58 | 21.11 | 20.60 | 5.95 | 2.31 | | 1.41 | | MnO | 0.90 | 0.05 | 0.16 | 0.09 | 0.15 | 0.22 | bdl | | bdl | | MgO | 4.18 | 5.37 | 7.56 | 8.04 | 8.22 | 2.41 | 0.59 | | 0.71 | | CaO | 0.03 | 0.01 | bdl | 0.01 | bdl | 0.02 | bdl | | bdl | | Na ₂ O | 0.05 | 0.15 | 0.17 | 0.16 | 0.24 | 0.15 | 0.37 | | 0.47 | | K ₂ O | 9.10 | 9.23 | 9.46 | 8.46 | 8.31 | 9.84 | 9.82 | 1 | 0.14 | | Cr ₂ O ₃ | bdl | 0.07 | 0.02 | 0.02 | 0.02 | bdl | bdl | _ | 0.02 | | П | 1.63 | 0.33 | 0.20 | 0.28 | 0.25 | 1.77 | 0.08 | | bdl | | Ω | bdl | 0.07 |
0.01 | 0.01 | 0.01 | bdl | bdl | | bdl | | Total | 93.76 | 94.48 | 94.68 | 93.72 | 94.42 | 94.82 | 94.73 | 94 | 94.63 | | Cations per 11 oxygen | 1 oxygen | | | | | | | | | | <u>s</u> | 2.93 | 2.72 | 2.65 | 2.75 | 2.71 | 3.16 | 3.03 | | 3.03 | | ∄ | 0.07 | 0.19 | 0.15 | 0.11 | 0.16 | 0.02 | 0.07 | | 0.03 | | ₽ | 1.86 | 1.64 | 1.87 | 1.69 | 1.70 | 2.38 | 2.77 | | 2.85 | | Fe | 1.21 | 1.62 | 1.26 | 1.38 | 1.33 | 0.35 | 0.13 | | 0.08 | | Mn | 0.06 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.00 | - | 0.00 | | Mg | 0.48 | 0.64 | 0.87 | 0.93 | 0.94 | 0.25 | 0.06 | | 0.07 | | Ca | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | | Na | 0.01 | 0.02 | 0.03 | 0.03 | 0.04 | 0.02 | 0.05 | 0 | 0.06 | | X | 0.90 | 0.94 | 0.93 | 0.84 | 0.82 | 0.88 | 0.84 | 0 | .87 | | Total | 7.52 | 7.77 | 7.77 | 7.74 | 7.71 | 7.07 | 6.95 | 6 | 6.99 | | Fe# | 0.72 | 0.72 | 0.59 | 0.60 | 0.59 | X _{Na} 0.02 | 0.06 | 0. | 0.06 | | AI (VI) | 0.79 | 0.36 | 0.52 | 0.44 | 0.41 | | | | | | = below de | bdl = below detection limit | | | | | | | | | **Table S5:** Representative microprobe composition of plagioclase and K-feldspar from Dang Chu samples. | | - | | | | <u> </u> | | |-------------------|-------------|-------------|------------|-------------|-------------|------| | Sample | BU13-126A | BU13-104C | BU13-104C | BU13-130B | BU13-131B | 2000 | | phase | plagioclase | plagioclase | k'feldspar | plagioclase | plagioclase | | | 2 | matrix | matrix | matrix | matrix | matrix | | | SiO ₂ | 62.89 | 62.99 | 64.05 | 62.92 | 61.65 | | | Al_2O_3 | 23.74 | 23.62 | 19.23 | 23.19 | 24.25 | | | FeO | 0.03 | 0.01 | 0.07 | 0.04 | 0.03 | | | CaO | 4.48 | 4.38 | 0.01 | 4.58 | 5.05 | | | Na ₂ O | 9.16 | 9.14 | 1.65 | 8.91 | 8.73 | | | K ₂ O | 0.12 | 0.21 | 14.30 | 0.11 | 0.10 | | | Total | 100.42 | 100.35 | 99.31 | 99.75 | 99.81 | | | Cations per | | | | | 0.74 | | | Si | 2.77 | 2.78 | 2.96 | 2.79 | 2.74 | | | Al | 1.23 | 1.23 | 1.05 | 1.21 | 1.27 | | | Fe | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | Ca | 0.21 | 0.21 | 0.00 | 0.22 | 0.24 | | | Na | 0.78 | 0.78 | 0.15 | 0.77 | 0.75 | | | K | 0.01 | 0.01 | 0.84 | 0.01 | 0.01 | | | Total | 5.00 | 5.01 | 5.00 | 5.00 | 5.01 | | | X_{Ab} | 0.78 | 0.78 | 0.15 | 0.77 | 0.75 | | | X_{An} | 0.21 | 0.21 | 0.00 | 0.22 | 0.24 | | | X _{Or} | 0.01 | 0.01 | 0.85 | 0.01 | 0.01 | | **Discussion S3:** Methodology and supporting data for finite strain analyses Two foliation-normal thin sections were analyzed from each finite strain sample (Tables 3, S1), following methods outlined in Long et al. (2011c). For the eight samples that exhibited mineral stretching lineation, one thin section was cut parallel to lineation, which approximates the XZ strain plane (thin sections ending with 'A'), and one was cut normal to lineation, which approximates the YZ strain plane (thin sections ending with 'B'). For the three samples that exhibited crenulation cleavage but not stretching lineation, the 'A' thin section was cut normal to crenulation cleavage, and the 'B' thin section was cut parallel to crenulation cleavage. For the one sample (121) that did not exhibit stretching lineation or crenulation cleavage, the 'A' thin section was cut in a north-south orientation, which approximates lineation-parallel, and the 'B' thin section was cut in an east-west orientation, which approximates lineation-normal. Two types of quartz porphyroclast scenarios were analyzed. The most common was observed in phyllite and schist, where quartz porphyroclasts were isolated within a micaceous matrix (n = 9) (Figs. 11A, S1A-D). The second scenario was observed in marble and calcareous quartzite, where quartz porphyroclasts were isolated within a matrix of calcite (n = 3) (Fig. 11B). For each thin section, the Rf- ϕ method (e.g., Ramsay, 1967; Dunnet, 1969; Ramsay and Huber, 1983) was used to quantify a 2D strain ellipse. The final elongation (Rf; the ratio of the long axis to the short axis), and ϕ (defined here as the angle of inclination of the long axis measured relative to foliation), were measured for 30 quartz porphyroclasts on photomicrographs of each thin section. Photomicrographs were taken with the apparent dip of tectonic foliation oriented horizontal, north or east toward the right-hand side of the page, and structurally-upward toward the top of the page. Representative photomicrographs with measured grains annotated are shown in Figures 11 and S1, and Rf- ϕ plots showing data from individual grains measured on each thin section are shown in Figure S2. The tectonic ellipticity (Rs) of each thin section was estimated using the harmonic mean of all Rf values (e.g., Lisle, 1977; 1979), and the mean of all ϕ values is reported as the overall ϕ value for the thin section. All analyses were equivalent to 'situation B' of Figure 5.5 of Ramsay and Huber (1983). Uncertainties reported for Rs and ϕ represent 1 standard error of all measurements (note: Rs values and uncertainties are rounded to the nearest single decimal place, and ϕ values and uncertainties are rounded to the nearest degree). Uncertainties in Rs range between ± 0.1 -0.3, and uncertainties in ϕ range between ± 1 -4°. ϕ was measured relative to the apparent dip of foliation, which was oriented horizontal in each photomicrograph. Therefore, ϕ is equivalent to the parameter θ ', as defined by Ramsay and Huber (1983). The sign convention used for ϕ is: down to the north or east relative to foliation (clockwise from foliation in the photomicrographs) is positive, and down to the south or west relative to foliation (counterclockwise from foliation in the photomicrographs) is negative. The Rs and ϕ values for the 2D strain ellipses from each 'A' and 'B' thin section were combined to generate the 3D strain ellipsoid for the sample (e.g., Long et al., 2011c). For all analyses, the Z axis was sub-normal to foliation in both the 'A' and 'B' thin sections, and was assigned an Rs value of 1.0 in both ellipses. The Rs values of both 2D ellipses were then directly compared to assign the X and Y strain directions (X>Y), and the relative magnitudes of the axes of the 3D strain ellipsoid. In all analyses, Rs in the 'A' thin section was either greater than or equivalent within error to Rs in the 'B' thin section, and the shortening direction is approximately normal to foliation. This justified using foliation, lineation, and crenulation cleavage to approximate the principal strain directions within the studied rocks. **Figure S1:** Annotated photomicrographs showing representative examples of quartz grain measurements for Rf- ϕ analyses, organized from structurally-low to high. All photos are taken in cross-polarized light, with tectonic foliation oriented horizontal. The arrow points structurally-upward. All photos are from lineation-parallel thin sections, and illustrate the scenario of non-recrystallized quartz porphyroclasts isolated within a micaceous matrix. The long axes of measured quartz porphyroclasts are shown in red, and short axes are shown in blue. **Figure S2** (following three pages): Rf- ϕ graphs, plotting the natural log of final ellipticity (Rf) versus the orientation of the long axis (ϕ) for individual quartz porphyroclasts. ϕ is measured relative to foliation; a positive ϕ value is down to the north or east relative to foliation (i.e., clockwise relative to foliation in the photomicrographs), and a negative ϕ value is down to the south or west relative to foliation (i.e., counterclockwise relative to foliation in the photomicrographs). Errors reported for Rs and ϕ represent 1 standard error of all measurements. **Discussion S4:** Methodology for estimation of mean kinematic vorticity with the Rs-θ' method 216217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 Assuming plane strain and idealized steady-state flow, the relationship between tectonic strain (Rs) and the angle between foliation and the long axis of the strain ellipsoid (θ ') can be used to estimate mean kinematic vorticity (W_m) (Fossen and Tikoff, 1993; Tikoff and Fossen, 1995). W_m can be measured by plotting the Rs value of the lineation-parallel thin section (Rs[x/z]) versus the corresponding θ ' value, and comparing to graphed lines of constant W_m (e.g., Tikoff and Fossen, 1995; Yonkee, 2005). This involves assumption that the orientation of tectonic foliation approximates a 'shear zone boundary', or boundary of a 'high strain zone' (Tikoff and Fossen, 1995). As illustrated in mapping in Bhutan and adjacent regions of the Himalaya, 1st-order Himalayan shear zones, such as the MCT, are oriented subparallel to macroscopic foliation for significant across-strike map distances, including ≥50 km in the Kuru Chu half window in eastern Bhutan (Long et al., 2011b), \geq 60 km in the Darjeeling-Sikkim Himalaya (Bhattacharyya et al., 2015), and ≥110 km in the Arun half window in eastern Nepal (Schelling and Arita, 1991). This justifies the assumption that tectonic foliation is approximately parallel to the 'shear zone boundary' of major Himalayan structures such as the MCT. Accordingly, here we also apply this assumption to transport-parallel lengthening in the hanging wall and footwall of the MCT (e.g., Long et al., 2016). 234235 236 237 **Discussion S5:** Compilation of published temperature and pressure data, estimation of structural height of samples, and estimation of N-S distance of samples along the MCT. 238239 240 241 242 243 244 245 Table S6 shows a compilation of published temperature and pressure data from central Bhutan, which are plotted in Figure 12 in the text, and also includes information on sample location (plotted on Figure 2 in the text), lithology, map unit, structural height above the MCT (rounded to the nearest 50 m), and north-south distance measured along the trace of the MCT (rounded to the nearest 100 m). Below, details are given on how structural
height and north-south distance were estimated. Figure 12 includes data collected from the Sarpang, Shemgang, and Dang Chu transects (Table S6). For the Sarpang transect, structural distance relative to the MCT was measured from the projected locations of samples on the Sarpang cross-section of Long et al. (2016; their Fig. 2B). For the Shemgang transect, structural distance was measured from projection of samples onto the Mandge Chu cross-section of Long et al. (2011b). For the Dang Chu transect, the heights of samples on the Dang Chu tectonostratigraphic column (Fig. 5 in the text) were used. For the samples of Cooper et al. (2013) that were located at a significant distance from the Dang Chu transect line, heights relative to the base of the Chekha Formation were calculated from 3point problems that incorporated topography and average dip angle of foliation. The heights of all Dang Chu transect samples were converted to height above the MCT by adding 5.7 km, the minimum observed thickness of GH rocks on the Dang Chu transect, to their height relative to the base of the Chekha Formation. This is supported by the map patterns of GH rocks to the west of the Dang Chu transect on Long et al. (2011d), which are deformed into a dome, and exhume the lowest GH unit (GHlml), exposing rocks that are at equivalent structural levels to those exposed just above the MCT ~60 km to the south. Thus, we interpret that the MCT is in the shallow subsurface at the latitude of the Dang Chu transect. For estimation of north-south distances, the trace of the MCT on the Mangde Chu cross-section of Long et al. (2011b) was used as a reference point. All samples were projected to their corresponding foliation-normal position on the MCT. Distances of Shemgang transect samples were measured on the MCT on the Mangde Chu cross-section. For Sarpang transect samples, the position of the MCT trace on the Mandge Chu section was projected directly west to the Sarpang transect cross-section (Long et al. 2016; their Fig. 2B), and distances were measured along the MCT relative to this point. Dang Chu transect samples were projected directly east to their respective positions on the Mandge Chu cross-section, and their corresponding distances along the MCT trace were measured. The data are listed on Table S6 in km north of the southernmost sample (sample 1A of Long et al. 2016). **Table S6** (following two pages): Compilation of published temperature and pressure data from central Bhutan. | 1 | | | | - | |--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|---------------------|------------|------------|------------|---------------------|---------------|---------------|------------------|------------|------------|------------|------------------------|-------------|-----------|------------| | Sarpang Dang Chu transect | | | | | Long et al. (2016) Cooper et al. (2013) this study data source | | | | | 210 | 24 | 26 | 27 | 32 | 32 | 34 | 35 | 36A | 39 | FB132 | FB132 | FB85 | FB07 | FB07 | FB125 | FB125 | FB58 | FB20 | FB52 | FB28 | FB77 | FB64 | 103A | 103A | 104C | 131B | 131B | 130B | 130A | 114 | 129 | 121 | 113E | 81 | 122 | 408 | 134 | 125A | 77AA | 126A | 74A | 76 | 75 | number | sample | published | | | BU14-14A | BU14-12BA | BU14-4 | BU14-5A | BU14-10B | BU14-10B | BU10-18 | BU14-8 | BU14-9 | BU10-21 | | | | | | | | | | | | | | BU13-103A | BU13-103A | BU13-104C | BU13-131B | BU13-131B | BU13-130B | BU13-130A | BU13-114 | BU13-129 | BU13-121 | BU13-113E | BU14-81 | BU13-122 | BU13-124 | BU14-78A | BU13-125A | BU14-77AA | BU13-126A | BU14-74A | BU14-76 | BU14-75 | number | sample | original | | | Jaishidanda | Jaishidanda | Jaishidanda | Jaishidanda | Jaishidanda | Jaishidanda | GHIml | GHIml | GHIml | GHIml | GHlmu | GHlmu | Chekha Pzu | Pzu | Pzu | GHIml | GHIml | GHIml | Chekha Deshichilling | Deshichilling | Deshichilling | Deshichilling | Maneting | Maneting | Maneting | et al. (2011d) | on Long | map unit | | | quartzite | schist | schist | quartzite | schist | schist | paragneiss | schist | paragneiss | schist | paragneiss | paragneiss | calc-silicate | paragneiss | paragneiss | paragneiss | paragneiss | quartzite | quartzite | schist | marble | slate | calc-silicate | quartzite | quartzite | metapelite | schist | schist | metapelite | quartzite | phyllite | phyllite | limestone | phyllitic quartzite | marble | slate | marhle | pnyllitic quartzite | phyllite | quartzite | siliceous gneiss | phyllite | phyllite | phyllite | lithology | | | | | 26.91653 | 26.91817 | 26.92247 | 26.92378 | 26.92519 | 26.92519 | 26.92692 | 26.92742 | 26.92744 | 26.93636 | 27.53700 | 27.53700 | 27.55600 | 27.50500 | 27.50500 | 27.52000 | 27.52000 | 27.44500 | 27.51800 | 27.49600 | 27.55100 | 27.57700 | 27.61700 | 27.48494 | 27.48494 | 27.49025 | 27.49942 | 27.49942 | 27.50311 | 27.50311 | 27.51236 | 27.49969 | 27.56708 | 27.50733 | 27.54450 | 27.56861 | 27 57706 | 27.60594 | 27.61111 | 27.61986 | 27.62661 | 27.64314 | 27.65047 | 27.65972 | (dd.ddddd) | latitude | | | | 90.20367 | 90.20361 | 90.21133 | 90.21072 | 90.20681 | 90.20681 | 90.20897 | 90.20919 | 90.20739 | 90.23422 | 89.99700 | 89.99700 | 90.02800 | 90.07800 | 90.07800 | 90.29900 | 90.29900 | 90.12700 | 90.25000 | 90.16500 | 90.20200 | 90.04800 | 90.03600 | 89.90569 | 89.90569 | 89.92844 | 90.05850 | 90.05850 | 90.06475 | 90.06475 | 90.09447 | 90.07014 | 90.17622 | 90.08442 | 90.17144 | 90 17947 | 90.10009 | 90.18894 | 90.19183 | 90.19564 | 90.19764 | 90.20075 | 90.19719 | 90.19569 | (dd.ddddd) | longitude | | | | -0.70 | -0.55 | -0.20 | -0.15 | -0.05 | -0.05 | 0.15 | 0.15 | 0.20 | 0.80 | 3.60 | 3.60 | 5.75 | 6.60 | 6.60 | 6.65 | 6.65 | 7.20 | 7.20 | 7.40 | 8.20 | 8.25 | 8.80 | 0.45 | 0.45 | 1.25 | 5.75 | 5.75 | 6.40 | 6.40 | 6.40 | 6.50 | 6.90 | 6.95 | 7.20 | 7.35 | 7.65 | 9.40 | 9.70 | 10.15 | 10.40 | 10.65 | 10.95 | 11.05 | 2 | relative to | height | structural | | 5.1 | 5.1 | 5.2 | 5.2 | 5.4 | 5.4 | 5.5 | 5.5 | 5.6 | 6.5 | 75.4 | 75.4 | 77.6 | 71.8 | 71.8 | 73.6 | 73.6 | 65.3 | 73.4 | 70.9 | 77.1 | 79.9 | 84.3 | 69.6 | 69.6 | 70.2 | 71.2 | 71.2 | 71.6 | 71.6 | 72.7 | 71.3 | 78.7 | 72.1 | 76.2 | 78.9 | 79.8 | 83.1 | 83./ | 84.6 | 85.3 | 87.2 | 88.1 | 89.1 | MCT (km) | along | distance | N-S | | EBSD 455 | RSCM 514 | P-T 621 | RSCM 629 | P-T 623 | RSCM 615 | RSCM 676 | | 0.000 | RSCM 670 | P-T 536 | RSCM 557 | RSCM 489 | | _ | | | | | | | | | P-T 646 | | | | _ | | | | | | | | | RSCM 472 | | | | P-T 566 | RSCM 423 | RSCM 468 | RSCM 488 | type ¹ (°C) | data T | | | | 50 | 33 | 25 | 36 | 25 | 41 | 32 | 30 | 27 | 30 | 75 | 37 | 26 | 48 | 31 | 56 | 31 | 34 | 29 | 28 | 30 | 21 | 33 | 25 | 35 | 25 | 25 | 50 | 25 | 63 | 41 | 67 | 46 | 45 | 41 | 47 | 2 6 | 3 3 | . C | 38 | 25 | 27 | 29 | 33 | (°C) | error | 7 | | | ±50 | 2SE | 20 | 2SE | 2σ | 2SE 2σ | | | | 2SE | 2σ | 2SE 725 | 3CE | 2SE | 2SE | 2σ | 2SE | 2SE | 2SE | 1- | error | 7 | | | | | | | | | | | | | 4.5 | | | 5.0 | | 6.2 | | | | | | | | | | 6.9 | 7.2 | | 6.3 | | | | | | | | | | | | | | | | kbar) (| ъ | | | | | | | | | | | | | | 0.8 | | | 0.6 | | 0.8 | | | | | | | | | | 1.2 | 1.2 | | 1.1 | | | | | | | | | | | | | | | | (kbar) (kbar) level | error | ٥ | | | | | | | | | | | | | 2SE | | | 2SE | | 2SE | | | | | | | | | | 1σ | 1σ | | 1σ | | | | | | | | | | | | | | | | level | error | ъ | | | Shemgang Sarpang |---|----------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------| | Shemgang Cooperet al. (2013) BT1134 Maneting phyllite 27.23600 90.68100 8.25 38.0 | Cooper et al. (2013) | Cooper et al. (2013) | Corrie et al. (2012) Long et al. (2016) | BT1134 | BT1136 | BT1138 | 47 | 48 | 74 | 75 | 76 | 59 | 77 | 58 | 111 | 78 | 104 | 106 | 54 | 109 | 102 | 53 | 52 | 63 | 101 | 65 | 66 | 19 | 20 | 89 | 21 | 22 | 95 | 54 | 99 | 87 | 88 | 90 | 32 | 26 | 23 | 1A | 3A | 4A | 10A | 11A | 12A | 12A | 16A | 18A | | | | | BU08-47 | BU08-48 | BU08-74 | BU08-75 | BU08-76 | BU08-59 | BU08-77 | BU08-58 | BU08-111 | BU08-78 | BU08-104 | BU08-106 | BU08-54 | BU08-109 | BU08-102 | BU08-53 | K11B052 | BU08-63 | BU08-101 | BU08-65 | BU08-66 | K11B019 | K11B020 | BU08-89 | K11B021 | K11B022 | BU08-95 | K11B054 | BU08-99 | BU08-87 | BU08-88 | BU08-90 | K11B032 | K11B026 | K11B023 | BU10-9A | BU14-35AA | BU14-32A | BU14-24BA | BU14-24BA | BU14-22AA | BU14-22AA | BU14-19 | BU14-17 |
 Maneting | Maneting | Maneting | GHIml | GHlml | GHIml | GHIo | GHIo | GHIo | GHlmu | GHIo | GHIo | GHlmu Chekha | Chekha | Maneting | Maneting | Maneting | Maneting | Chekha | Chekha | Chekha | Chekha | Maneting | Maneting | Maneting | Maneting | Manas | Manas | Manas | Daling | Daling | Daling | Daling | Daling | Daling | | phyllite | phyllite | phyllite | schist | schist | schist | schist | paragneiss | paragneiss | paragneiss | orthogneiss | schist | paragneiss | quartzite | schist | paragneiss | schist | schist | schist | schist | schist | schist | phyllite | schist | quartzite | quartzite | phyllite | phyllite | phyllite | phyllite | quartzite | quartzite | quartzite | quartzite | phyllite | phyllite | phyllite | phyllite | phyllite | quartzite | phyllite | quartzite | phyllite | quartzite | quartzite | quartzite | quartzite | | 27.23600 | 27.22800 | 27.23400 | 27.04936 | 27.04939 | 26.97725 | 27.01053 | 27.01447 | 27.08494 | 27.03694 | 27.09250 | 27.48911 | 27.04964 | 27.38400 | 27.41278 | 27.12083 | 27.44928 | 27.34883 | 27.11714 | 27.11665 | 27.12833 | 27.33431 | 27.12750 | 27.12064 | 27.27837 | 27.24979 | 27.19322 | 27.23751 | 27.23316 | 27.22631 | 27.13609 | 27.30569 | 27.17514 | 27.18875 | 27.20494 | 27.20350 | 27.22770 | 27.22619 | 26.86922 | 26.88189 | 26.88294 | 26.90028 | 26.90028 | 26.90083 | 26.90083 | 26.90786 | 26.91231 | | 90.68100 | 90.63800 | 90.61500 | 90.79172 | 90.78850 | 90.55325 | 90.58108 | 90.61519 | 90.77514 | 90.62714 | 90.76658 | 90.51094 | 90.63500 | 90.51411 | 90.53422 | 90.73686 | 90.47497 | 90.57372 | 90.72031 | 90.67087 | 90.70406 | 90.59397 | 90.67603 | 90.67347 | 90.62914 | 90.60669 | 90.72422 | 90.61330 | 90.61492 | 90.62683 | 90.66539 | 90.60458 | 90.69531 | 90.70633 | 90.71044 | 90.67430 | 90.64047 | 90.61834 | 90.26447 | 90.26225 | 90.24214 | 90.21081 | 90.21081 | 90.20828 | 90.20828 | 90.20972 | 90.20897 | | 8.25 | 9.00 | 9.45 | 0.20 | 0.25 | 0.25 | 1.40 | 1.40 | 1.80 | 1.85 | 2.35 | 2.65 | 2.70 | 3.80 | 4.00 | 4.20 | 4.45 | 4.55 | 4.55 | 5.00 | 5.30 | 5.35 | 5.35 | 5.40 | 5.40 | 5.40 | 5.40 | 5.40 | 5.40 | 5.40 | 5.80 | 6.30 | 7.00 | 7.45 | 8.00 | 8.55 | 9.00 | 9.50 | -4.45 | -3.75 | -3.60 | -2.30 | -2.30 | -2.20 | -2.20 | -1.70 | -1.30 | | 38.0 | 38.8 | 44.3 | 18.7 | 18.9 | 10.8 | 15.0 | 15.6 | 23.7 | 16.3 | 24.5 | 70.5 | 18.7 | 59.5 | 63.7 | 27.5 | 66.7 | 55.7 | 25.6 | 25.0 | 26.3 | 54.3 | 25.7 | 25.2 | 45.8 | 45.2 | 31.9 | 45.0 | 44.3 | 39.6 | 29.5 | 50.6 | 29.8 | 30.8 | 29.8 | 33.4 | 38.8 | 39.9 | 0.0 | 1.0 | 1.2 | 4.0 | 4.0 | 4.5 | 4.5 | 4.6 | 4.7 | | RSCM 571 | | | | | | P-T 675 | | P-T 670 | | P-T 665 | P-T 665 | P-T 565 | P-T 580 | P-T 615 | | | P-T 605 | | | | | P-T 550 | | | P-T 525 | | P-T 520 | | | | | | | P-T 560 | | | | RSCM 352 | RSCM 311 | 1000 | EBSD 485 | RSCM 428 | EBSD 510 | RSCM 420 | EBSD 430 | EBSD 470 | | 25 | 24 | 23 | 20 | 15 | 20 | 15 | 25 | 15 | 25 | 20 | 15 | 20 | 20 | 15 | 30 | 25 | 20 | 20 | 35 | 15 | 20 | 20 | 15 | 15 | 20 | 15 | 15 | 15 | 25 | 15 | 25 | 25 | 20 | 20 | 15 | 25 | 25 | 57 | 27 | 61 | 50 | 31 | 50 | 47 | 50 | 50 | | 2SE | 2SE | 2SE | 2σ | | 2σ 20 | 2σ | 2σ | 2σ | 2σ | 2SE | 2SE | 2SE | ±50 | 2SE | ±50 | 2SE | ±50 | ±50 | | | | | 11.0 | 11.0 | 10.5 | 9.5 | 10.0 | 10.0 | 7.5 | 9.0 | 9.5 | 7.5 | 9.0 | 9.0 | | 9.0 | 9.0 | 9.0 | | 7.5 | 9.5 | 6.5 | 6.5 | 7.5 | 7.0 | 7.5 | 6.0 | 5.5 | 5.0 | 7.5 | 7.5 | | | 6.5 | 4.5 | 6.0 | 5.0 | | | | | | | | | | | | | | 1.0 | 0.5 | 1.0 | 1.0 | 1.5 | 0.5 | 1.0 | 1.0 | 1.0 | 1.0 | 0.5 | 0.5 | | 1.0 | 1.0 | 1.0 | | 1.0 | 1.0 | 1.5 | 0.5 | 1.0 | 1.0 | 1.0 | 0.5 | 1.0 | 1.0 | 1.0 | 1.0 | | | 1.5 | 1.0 | 2.5 | 1.0 | | | | | | | | | | | | | | 2σ | 2σ | 2σ | 2σ | 2σ | 20 | 2σ | 2σ | 2σ | 2σ | 2σ | 2σ | | 2σ | 2σ | 2σ | | 2σ | | 2σ | 2σ | 2σ | 2σ | | | | | | | | | | ## **Discussion S6:** Estimation of structural height of mapped positions of the STD The range in structural height of published mapped positions of the STD is compiled on Figures 5 and 12 in the text; the methodology for estimation of these heights is discussed here. On the Shemgang transect, the mapped locations of the STD from Grujic et al. (2011) and Greenwood et al. (2016) were projected onto the Mangde Chu cross-section of Long et al. (2011b). At the southern end of the transect, Greenwood et al. (2016) mapped the STD at a height of 1.8 km above the MCT, and Grujic et al. (2011) at 5.4 km. At the northern end of the transect, Greenwood et al. (2016) mapped the STD at 4.4 km, and Grujic et al. (2011) at 5.4 km. On the western side of the Dang Chu transect, the mapped locations of the STD from Greenwood et al. (2016), Grujic et al. (2011), and Long et al. (2011d) were projected onto their equivalent positions on the cross-section (Fig. 4) and tectonostratigraphic column (Fig. 5) of this study, and correspond to structural heights of 4.6 km, 4.8 km, and 6.7 km above the MCT, respectively (note: see discussion S5 above for details on estimation of the structural level of the MCT on the Dang Chu transect). For the STD as mapped by Cooper et al. (2013), the height was estimated by interpolation between the calculated heights of samples FB132 and FB85, and yielded a height of 7.5 km above the MCT. On the east side of the Dang Chu exposure, the heights of the STD as mapped by Grujic et al. (2011), Long et al. (2011b) and Greenwood et al. (2016) were calculated based on projection of the STD relative to the basal Chekha Formation contact as mapped on Figure 3 in this study, and yielded heights of 6.7 km, 6.5 km, and 6.8 km above the MCT, respectively. The height of the STD as mapped by Cooper et al. (2013) was calculated from interpolation between the heights of samples FB20 and FB28, and yielded a height of 7.8 km above the MCT. **Discussion S7:** Compilation of published strain data, and calculation of transport-parallel lengthening and transport-normal shortening. Table S7 shows a compilation of strain data from central Bhutan. Structural heights relative to the MCT were estimated in a similar manner to the P-T samples. Samples from the Shemgang transect were projected onto the Mangde Chu cross-section of Long et al. (2011b), samples from the Sarpang transect were projected onto the Sarpang cross-section of Long et al. (2016), and samples from the Dang Chu transect were measured off of the tectonostratigraphic column from this study (Fig. 5). Similar to the P-T samples, 5.7 km was added to sample heights relative to the base of the Chekha Formation for the Dang Chu samples, in order to estimate their height above the MCT. The range in W_m values from the Rs- θ ' method listed for each sample in Table S7 was calculated from the ± 1 standard error on θ ' values listed in data tables in Long et al. (2011c), Long et al. (2016), and this study. Restoration of the 3D strain ellipsoid for each sample to a sphere allowed estimation of elongations in the X and Y directions, and shortening in the Z direction. The Y elongation obtained from this technique was used to calculate the corrected flow-plane parallel and flow-plane normal elongations discussed below. For calculation of flow plane-parallel (i.e., transport-parallel) lengthening and flow-plane-normal (i.e. transport-normal) shortening, the equations of Figure 10 of Law (2010), which integrate strain ratio in the X/Z direction ($Rs_{[X/Z]}$) with mean kinematic vorticity number (W_m), were utilized. Because a range of W_m values are estimated with the Rs- θ ' method, due to assignment of a 1 standard error range for estimation of θ ' values (e.g., Long et al., 2016; this study), the low and high ranges of W_m values were used to estimate a permissible range of lengthening and shortening values. As these values do not account for lengthening in the Y direction, they are listed in Table S7 as 'uncorrected'. Next, using the Y lengthening values estimated for each sample from ellipsoid restoration to a sphere (the percent stretch in Y on the graphs of Law, 2010, his Fig. 11, and Xypolias et al., 2010, their Fig. 11), corrected values for transport-parallel lengthening and transport-normal shortening were calculated that account for lengthening in Y. These corrected values were calculated for the low and high ranges of W_m for each sample. These corrected ranges are plotted on Figure 12C-D in this study, with the dot representing the middle value, and the error bars representing the lower and upper limits of estimated lengthening and shortening. For five of the strain samples (63, 75, 95, 108, 128), only two-dimensional strain data in the X/Z plane were available. Therefore, because these samples could not be corrected for stretching in the Y direction, the transport-parallel lengthening values reported for these five samples in Table S7 should be interpreted as maxima, and the corresponding transport-normal shortening values should be interpreted as minima. In addition, three low-strain magnitude (Rs \leq 1.8) samples (68, 100, 105) yielded positive transport-parallel lengthening values between 0.5-1.5% and negative transport-normal shortening values between 5-6% (i.e., low-magnitude lengthening normal to the transport direction). Data from these three samples are plotted on Figures 12C-D, although only the positive portion of the error range for transport-normal shortening is visible on Figure 12D. Finally, eleven low-strain magnitude (Rs typically \leq 1.7) samples from the Shemgang transect (67, 71, 82, 83, 88, 90, 91, 94, 95, 98, and 101) exhibited high θ ' values (ranging between ~20-80°, and therefore high (~0.70-1.00) corresponding W_m values. Using the equation of Law (2010), these samples yielded negative values for both transport-parallel lengthening and transport-normal shortening (most on the order of ~10%). Therefore, these data were not able to be plotted on the Law (2010) and Xypolias et al. (2010) figures for correction of lengthening in Y, and are thus not plotted on Figures 12C-D. **Table S7** (following three
pages): Compilation of strain, transport-parallel lengthening, and transport-normal shortening data from central Bhutan. | | data | published
sample | original
sample | | | latitude | longitude | structural
height
relative to | | | | | | low
W _m
from | high
W _m
from | |----------------------|--|---------------------|----------------------|----------------------|------------------------|----------------------|----------------------|-------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|-------------------------------|--------------------------------| | transect | source | number | number | map unit | lithology | (dd.ddddd) | (dd.ddddd) | MCT (km) | Rs _[X/Z] | θ' _[x/z] | Rs _[Y/Z] | θ' _[y/z] | Rs _[X/y] | Rs-θ' | Rs-θ' | | Shemgang | Long et al. (2011c) | 63 | BU08-72 | Jaishidanda | quartzite | 26.96631 | 90.55781 | -0.35 | 3.2 | 1 | В | | | 0.00 | 0.15 | | Shemgang | Long et al. (2011c) | 64 | BU08-73 | Manas | quartzite | 26.95356 | 90.55161 | -2.75 | 1.8 | 4 | 1.7 | -1 | 1.1 | 0.00 | 0.45 | | Shemgang | Long et al. (2011c) | 65 | BU08-70 | Manas | phyllite | 26.95467 | 90.53058 | -3.05 | 2.2 | 11 | 1.7 | 21 | 1.3 | 0.50 | 0.60 | | Shemgang | Long et al. (2011c) | 66 | BU08-71 | Manas | quartzite | 26.94822 | 90.54275 | -3.40 | 1.8 | -7
10 | 1.7 | -10 | 1.1 | 0.30 | 0.55 | | Shemgang
Shemgang | Long et al. (2011c)
Long et al. (2011c) | 67
68 | BU08-69A
BU08-68 | Manas
Manas | quartzite
phyllite | 26.94117
26.92622 | 90.51731
90.50478 | -4.15
-5.55 | 1.9
1.7 | 19
-16 | 1.7
1.7 | -12
5 | 1.1 | 0.70 | 0.80 | | Shemgang | Long et al. (2011c) | 69 | BU08-110 | GHlmu | schist | 27.46367 | 90.50097 | 4.40 | 7.0 | -9 | 3.2 | 4 | 2.2 | 0.75 | 0.80 | | Shemgang | Long et al. (2011c) | 70 | BU08-108 | GHlmu | schist | 27.41619 | 90.49331 | 4.25 | 4.0 | 0 | 2.6 | -1 | 1.5 | 0.00 | 0.05 | | Shemgang | Long et al. (2011c) | 71 | BU08-107 | GHlmu | quartzite | 27.41461 | 90.50883 | 4.05 | 1.6 | 20 | 1.5 | -12 | 1.1 | 0.65 | 0.80 | | Shemgang | Long et al. (2011c) | 72 | BU08-106 | GHlmu | schist | 27.41278 | 90.53422 | 4.00 | 2.8 | -1 | 2.3 | -10 | 1.2 | 0.10 | 0.20 | | Shemgang | Long et al. (2011c) | 73 | BU08-105 | GHlmu | quartzite | 27.39489 | 90.53150 | 4.75 | 2.4 | 3 | 2.0 | -8 | 1.2 | 0.10 | 0.30 | | Shemgang | Long et al. (2011c) | 74 | BU08-104 | GHlmu | quartzite | 27.38400 | 90.51411 | 4.90 | 3.8 | -1 | 2.2 | -1 | 1.7 | 0.00 | 0.15 | | Shemgang
Shemgang | Long et al. (2011c)
Long et al. (2011c) | 75
76 | BU08-103
BU08-102 | GHlmu
GHlmu | quartzite
schist | 27.36603
27.34883 | 90.54006
90.57372 | 4.10
4.20 | 4.0
8.5 | 3
-1 | 3.7 | 3 | 2.3 | 0.20 | 0.30 | | Shemgang | Long et al. (2011c) | 77 | BU08-101 | GHImu | schist | 27.33431 | 90.59397 | 5.35 | 3.5 | 1 | 2.2 | -7 | 1.6 | 0.00 | 0.15 | | Shemgang | Long et al. (2011c) | 78 | BU08-100 | Chekha | quartzite | 27.32528 | 90.59294 | 8.35 | 3.4 | -1 | 2.8 | 11 | 1.2 | 0.00 | 0.15 | | Shemgang | Long et al. (2011c) | 79 | BU08-99 | Chekha | quartzite | 27.30569 | 90.60458 | 6.30 | 4.1 | 2 | 1.9 | -6 | 2.2 | 0.00 | 0.15 | | Shemgang | Long et al. (2011c) | 80 | BU08-98 | Chekha | quartzite | 27.27817 | 90.62914 | 6.10 | 1.5 | -6 | 1.5 | 0 | 1.0 | 0.15 | 0.35 | | Shemgang | Long et al. (2011c) | 81 | BU08-97 | Chekha | quartzite | 27.26008 | 90.60025 | 6.30 | 1.5 | -9 | 1.3 | -26 | 1.2 | 0.20 | 0.50 | | Shemgang | Long et al. (2011c) | 82 | BU08-96 | Maneting | phyllite | 27.23847 | 90.61353 | 8.45 | 1.6 | 58 | 1.4 | -31 | 1.1 | 0.80 | 0.95 | | Shemgang | Long et al. (2011c) | 83 | BU08-95 | Maneting | phyllite | 27.22631 | 90.62683 | 8.40 | 2.1 | -81 | 1.4 | 15 | 1.5 | 1.00 | 1.00 | | Shemgang
Shemgang | Long et al. (2011c)
Long et al. (2011c) | 84
85 | BU08-94
BU08-93 | Maneting
Maneting | phyllite
phyllite | 27.23581
27.20875 | 90.68114
90.67039 | 8.25
7.80 | 3.0 | 0 | 2.2 | 0
1 | 1.4 | 0.00 | 0.10 | | Shemgang | Long et al. (2011c) | 86 | BU08-90 | Maneting | phyllite | 27.20494 | 90.71044 | 7.80 | 2.8 | -5 | 1.6 | -20 | 1.8 | 0.25 | 0.35 | | Shemgang | Long et al. (2011c) | 87 | BU08-89 | Maneting | phyllite | 27.19322 | 90.72422 | 7.70 | 3.0 | -6 | 2.4 | -7 | 1.3 | 0.25 | 0.45 | | Shemgang | Long et al. (2011c) | 88 | BU08-88 | Chekha | quartzite | 27.18875 | 90.70633 | 7.50 | 1.5 | 24 | 1.4 | -7 | 1.1 | 0.75 | 0.85 | | Shemgang | Long et al. (2011c) | 89 | BU08-91 | Chekha | quartzite | 27.17578 | 90.69833 | 7.20 | 1.7 | -10 | 1.6 | 7 | 1.1 | 0.30 | 0.55 | | Shemgang | Long et al. (2011c) | 90 | BU08-87 | Chekha | quartzite | 27.17514 | 90.69531 | 7.15 | 1.6 | -22 | 1.5 | -14 | 1.1 | 0.70 | 0.80 | | Shemgang | Long et al. (2011c) | 91 | BU08-86 | Chekha | quartzite | 27.16092 | 90.69958 | 6.90 | 1.5 | 37 | 1.5 | -23 | 1.0 | 0.90 | 1.00 | | Shemgang | Long et al. (2011c) | 92 | BU08-49A | Chekha | quartzite | 27.14817 | 90.69133 | 6.15 | 1.6 | 7 | 1.4 | -15 | 1.1 | 0.20 | 0.40 | | Shemgang
Shemgang | Long et al. (2011c)
Long et al. (2011c) | 93
94 | BU08-67
BU08-64 | Chekha
Chekha | quartzite
quartzite | 27.12439
27.13264 | 90.66808
90.68092 | 5.45
5.40 | 1.8
1.6 | -5
12 | 1.7
1.1 | 1
-58 | 1.1 | 1.00 | 1.00 | | Shemgang | Long et al. (2011c) | 95 | BU08-65 | GHlmu | phyllite | 27.12750 | 90.67603 | 5.30 | 2.5 | -17 | | - | - | 0.70 | 0.80 | | Shemgang | Long et al. (2011c) | 96 | BU08-66 | GHlmu | schist | 27.12064 | 90.67347 | 5.30 | 2.3 | -12 | 1.6 | -12 | 1.4 | 0.50 | 0.65 | | Shemgang | Long et al. (2011c) | 97 | BU08-85 | GHlmu | schist | 27.11503 | 90.64817 | 5.25 | 1.8 | 5 | 1.7 | 3 | 1.1 | 0.05 | 0.25 | | Shemgang | Long et al. (2011c) | 98 | BU08-84 | GHlmu | quartzite | 27.11083 | 90.65803 | 5.20 | 1.2 | -70 | 1.2 | -48 | 1.0 | 1.00 | 1.00 | | Shemgang | Long et al. (2011c) | 99 | BU08-83 | GHlmu | quartzite | 27.08908 | 90.64250 | 4.15 | 2.0 | -3 | 1.7 | 2 | 1.2 | 0.00 | 0.20 | | Shemgang | Long et al. (2011c) | 100 | BU08-81 | GHlmu | schist | 27.06389 | 90.63392 | 3.10 | 1.8 | 15 | 1.7 | -11 | 1.1 | 0.60 | 0.70 | | Shemgang
Shemgang | Long et al. (2011c)
Long et al. (2011c) | 101
102 | BU08-80
BU08-79 | GHlmu
GHlmu | quartzite
quartzite | 27.05728
27.05200 | 90.63356
90.63397 | 3.00
2.80 | 1.6
2.1 | 21
0 | 1.5
1.7 | 1
-3 | 1.1 | 0.70 | 0.80 | | Shemgang | Long et al. (2011c) | 103 | BU08-78 | GHlmu | paragneiss | 27.04964 | 90.63500 | 2.75 | 3.1 | -4 | 1.9 | 8 | 1.6 | 0.20 | 0.30 | | Shemgang | Long et al. (2011c) | 104 | BU08-51 | Chekha | quartzite | 27.13739 | 90.70467 | 5.45 | 1.4 | 12 | 1.4 | 32 | 1.0 | 0.30 | 0.60 | | Shemgang | Long et al. (2011c) | 105 | BU08-50 | Chekha | quartzite | 27.13625 | 90.69350 | 5.50 | 1.6 | -14 | 1.4 | 11 | 1.1 | 0.50 | 0.70 | | Shemgang | Long et al. (2011c) | 106 | BU08-63 | GHlmu | schist | 27.12833 | 90.70406 | 4.75 | 6.3 | -4 | 1.9 | 4 | 3.3 | 0.30 | 0.50 | | Shemgang | Long et al. (2011c) | 107 | BU08-52 | GHlmu | schist | 27.12453 | 90.70847 | 4.15 | 6.9 | -7 | 2.2 | 7 | 3.1 | 0.70 | 0.75 | | Shemgang | Long et al. (2011c) | 108 | BU08-62 | GHlmu | schist | 27.11722 | 90.71136 | 3.50 | 4.6 | 0 | - | - | - | 0.00 | 0.05 | | Shemgang
Sarpang | Long et al. (2011c)
Long et al. (2016) | 109
19 | BU08-55
BU14-16 | GHlmu
Daling | schist
schist | 27.11633
26.91436 | 90.73708
90.20775 | 1.95
-1.05 | 6.2
4.2 | 2
-3 | 3.8
2.5 | -8
7 | 1.6
1.7 | 0.10 | 0.20 | | Sarpang | Long et al. (2016) | 12 | BU14-22A | Daling | quartzite | 26.90083 | 90.20828 | -2.20 | 3.3 | 2 | 2.5 | Ó | 1.3 | 0.10 | 0.20 | | Sarpang | Long et al. (2016) | 11 | BU14-24B | Daling | phyllite | 26.90028 | 90.21081 | -2.30 | 2.5 | -2 | 1.9 | 2 | 1.3 | 0.05 | 0.20 | | Sarpang | Long et al. (2016) | 9 | BU14-23B | Manas | quartzite | 26.91539 | 90.21214 | -2.45 | 2.1 | 5 | 1.9 | -1 | 1.1 | 0.20 | 0.40 | | Sarpang | Long et al. (2016) | 7 | BU14-25A | Manas | quartzite | 26.89886 | 90.21428 | -2.55 | 1.9 | -10 | 1.9 | -3 | 1.0 | 0.40 | 0.55 | | Sarpang | Long et al. (2016) | 6 | BU14-29 | Manas | quartzite | 26.89294 | 90.22986 | -3.10 | 1.7 | -5 | 1.6 | 15 | 1.1 | 0.15 | 0.35 | | Sarpang | Long et al. (2016) | 5 | BU10-10 | Manas | phyllite | 26.88669 | 90.26917 | -3.40 | 1.8 | -1 | 1.2 | 7 | 1.5 | 0.05 | 0.20 | | Sarpang | Long et al. (2016) | 4 | BU14-32
BU14-35A | Manas | phyllite | 26.88294
26.88189 | 90.24214 | -3.60 | 1.8 | -4 | 1.8 | 0 | 1.0 | 0.10 | 0.30 | | Sarpang
Sarpang | Long et al. (2016)
Long et al. (2016) | 3 | BU14-35A
BU14-34 | Manas
Manas | quartzite
phyllite | 26.88189 | 90.26225
90.25431 | -3.75
-3.95 | 1.7
1.8 | -3
-3 | 1.5
1.5 | 6
0 | 1.1 | 0.00 | 0.25 | | Sarpang | Long et al. (2016) | 1 | BU10-9 | Manas | phyllite | 26.86922 | 90.26447 | -3.95
-4.45 | 1.5 | -3
-2 | 1.5 | -3 | 1.0 | 0.00 | 0.30 | | Dang Chu | this study | 74 | BU14-74 | Maneting | phyllite | 27.64314 | 90.20075 | 10.65 | 2.5 | -3 | 1.6 | 8 | 1.6 | 0.15 | 0.25 | | Dang Chu | this study | 125A | BU13-125A | Deshichilling | phyllite | 27.61111 | 90.19183 | 9.70 | 2.9 | 2 | 2.7 | -2 | 1.1 | 0.10 | 0.25 | | Dang Chu | this study | 124 | BU13-124 | Deshichilling | phyllite | 27.59558 | 90.18669 | 8.70 | 2.8 | -5 | 2.4 | 2 | 1.2 | 0.25 | 0.35 | | Dang Chu | this study | 123B | BU13-123B | Deshichilling | phyllite | 27.58058 | 90.19064 | 8.10 | 2.5 | -5 | 2.2 | -5 | 1.1 | 0.25 | 0.35 | | Dang Chu | this study | 120A | BU13-120A | Chekha | quartzite | 27.53983 | 90.16672 | 7.35 | 2.1 | 2 | 1.6 | -11 | 1.3 | 0.00 | 0.30 | | Dang Chu | this study | 113A | BU13-113A | Chekha | phyllite | 27.50733 | 90.08442 | 6.95 | 2.8 | -3 | 2.6 | -3 | 1.1 | 0.15 | 0.25 | | Dang Chu | this study | 118B | BU13-118B | Chekha | quartzite | 27.54747 | 90.13567 | 6.95 | 2.0 | 1 | 1.8 | 5 | 1.1 | 0.00 | 0.20 | | Dang Chu
Dang Chu | this study
this study |
121
128 | BU13-121
BU13-128 | Chekha
Chekha | limestone
phyllite | 27.56708
27.50450 | 90.17622
90.07872 | 6.90
6.60 | 2.3 | -5
-2 | 1.7 | -4 | 1.4 | 0.20 | 0.40 | | Dang Chu | this study | 129 | BU13-128 | Chekha | phyllite | 27.30430 | 90.07014 | 6.50 | 3.5 | -9 | 3.1 | -4 | 1.1 | 0.50 | 0.65 | | Dang Chu | this study | 114 | BU13-114 | Chekha | phyllite | 27.51236 | 90.09447 | 6.40 | 3.2 | 2 | 3.0 | -2 | 1.1 | 0.10 | 0.25 | | Dang Chu | this study | 131B | BU13-131B | Chekha | schist | 27.49942 | 90.05850 | 5.75 | 2.8 | -2 | 2.6 | 1 | 1.1 | 0.10 | 0.20 | | Elongation valu | | | | uncorrected | uncorrected | uncorrected | uncorrected | corrected | uncorrected | uncorrected | |-----------------|--------------|-------------|------------|--------------|----------------|--------------|-----------------|-----------------|--------------|----------------| | | lineation- | lineation- | foliation- | transport- | undeformed | parallel (X) | normal (Y) | normal (Z) | normal | normal | parallel | parallel | parallel | normal | normal | | sphere | lengthening | lengthening | shortening | stretch | shortening (%) | stretch | lengthening (%) | lengthening (%) | stretch | shortening (%) | | diameter | (%) | (%) | (%) | (low Wm) | (high Wm) | (high Wm) | | 1.79 | 79 | 0 | 44 | 0.56 | 44 | 1.79 | 79 | 79 | 0.57 | 43 | | 1.45 | 24 | 17 | 31 | 0.75 | 25 | 1.34 | 34 | 15 | 0.86 | 14 | | 1.55 | 42 | 10 | 36 | 0.82 | 18 | 1.22 | 22 | 12 | 0.91 | 9 | | 1.45 | 24 | 17 | 31 | 0.79 | 21 | 1.26 | 26 | 12 | 0.94 | 6 | | 1.48 | 29 | 15 | 32 | 1.11 | -11 | 0.90 | -10 | 2 | 1.37 | -37 | | 1.42 | 19 | 19 | 30 | 0.96 | 4 | 1.04 | 4 | 2 | 1.16 | -16 | | 2.82 | 148 | 14 | 65 | 0.76 | 24 | 1.32 | 32 | 14 | 0.88 | 12 | | 2.18
1.34 | 83
20 | 19
12 | 54
25 | 0.50
1.10 | 50
-10 | 2.00
0.91 | 100
-9 | 69 | 0.50
1.45 | 50
-45 | | 1.86 | 50 | 24 | 46 | 0.60 | 40 | 1.66 | 66 | 35 | 0.62 | 38 | | 1.69 | 42 | 19 | 41 | 0.65 | 35 | 1.54 | 54 | 30 | 0.69 | 31 | | 2.03 | 87 | 8 | 51 | 0.51 | 49 | 1.95 | 95 | 81 | 0.52 | 48 | | 2.00 | 100 | 0 | 50 | 0.52 | 48 | 1.94 | 94 | 94 | 0.54 | 46 | | 3.16 | 169 | 17 | 68 | 0.34 | 66 | 2.91 | 191 | 145 | 0.35 | 65 | | 1.97 | 77 | 11 | 49 | 0.53 | 47 | 1.87 | 87 | 68 | 0.54 | 46 | | 2.12 | 60 | 32 | 53 | 0.54 | 46 | 1.84 | 84 | 43 | 0.55 | 45 | | 1.98 | 107 | -4 | 50 | 0.49 | 51 | 2.02 | 102 | 117 | 0.50 | 50 | | 1.31 | 14 | 14 | 24 | 0.83 | 17 | 1.21 | 21 | 10 | 0.88 | 12 | | 1.25 | 20 | 4 | 20 | 0.84 | 16 | 1.20 | 20 | 15 | 0.97 | 3 | | 1.31 | 22 | 7 | 24 | 1.45 | -45 | 0.69 | -31 | | 2.97 | -197 | | 1.43 | 47 | -2 | 30 | 21.99 | -2099 | 0.05 | -95 | 37,75 Cata | 21.99 | -2099 | | 1.88 | 60 | 17 | 47 | 0.58 | 42 | 1.73 | 73 | 49 | 0.58 | 42 | | 2.06 | 46 | 41 | 51 | 0.58 | 42 | 1.73 | 73 | 31 | 0.60 | 40 | | 1.65 | 70 | -3 | 39 | 0.63 | 37 | 1.60 | 60 | 66 | 0.66 | 34 | | 1.93 | 55 | 24 | 48 | 0.61 | 39 | 1.65 | 65 | 33 | 0.68 | 32 | | 1.28 | 17 | 9 | 22 | 1.32 | -32
19 | 0.76 | -24 | 11 | 1.71 | -71
4 | | 1.40
1.34 | 22
20 | 15
12 | 28
25 | 0.81
1.18 | -18 | 1.23
0.85 | 23
-15 | 11 | 0.96
1.45 | -45 | | 1.34 | 14 | 14 | 24 | 2.10 | -110 | 0.48 | -52 | | 22.16 | -2116 | | 1.31 | 22 | 7 | 24 | 0.81 | 19 | 1.23 | 23 | 16 | 0.88 | 12 | | 1.45 | 24 | 17 | 31 | 0.75 | 25 | 1.34 | 34 | 15 | 0.76 | 24 | | 1.21 | 33 | -9 | 17 | 22.13 | -2113 | 0.05 | -95 | 13 | 22.13 | -2113 | | 1.58 | 58 | 0 | 37 | 1.00 | 0 | 1.00 | 0 | | 1.26 | -26 | | 1.54 | 49 | 4 | 35 | 0.80 | 20 | 1.25 | 25 | 20 | 0.96 | 4 | | 1.45 | 24 | 17 | 31 | 0.75 | 25 | 1.34 | 34 | 15 | 0.78 | 22 | | 1.13 | 6 | 6 | 11 | 22.28 | -2128 | 0.04 | -96 | | 22.28 | -2128 | | 1.50 | 33 | 13 | 33 | 0.71 | 29 | 1.41 | 41 | 25 | 0.73 | 27 | | 1.45 | 24 | 17 | 31 | 0.99 | 1 | 1.01 | 1 | 1 | 1.13 | -13 | | 1.34 | 20 | 12 | 25 | 1.18 | -18 | 0.85 | -15 | | 1.45 | -45 | | 1.53 | 37 | 11 | 35 | 0.69 | 31 | 1.45 | 45 | 32 | 0.69 | 31 | | 1.81 | 72 | 5 | 45 | 0.59 | 41 | 1.71 | 71 | 62 | 0.61 | 39 | | 1.25 | 12 | 12 | 20 | 0.89 | 11 | 1.12 | 12 | 5 | 1.09 | -9 | | 1.31 | 22 | 7 | 24 | 0.94 | 6 | 1.06 | 6 | 3 | 1.18 | -18 | | 2.29 | 175 | -17 | 56 | 0.43 | 57 | 2.31 | 131 | 177 | 0.51 | 49 | | 2.48 | 179 | -11 | 60 | 0.67 | 33 | 1.49 | 49 | 72 | 0.76 | 24 | | 2.14 | 114 | 0 | 53 | 0.47 | 53 | 2.14 | 114 | 114 | 0.47 | 53 | | 2.87
2.19 | 116
92 | 33
14 | 65
54 | 0.41
0.50 | 59
50 | 2.47
1.98 | 147
98 | 86
75 | 0.42
0.53 | 58
47 | | 2.19 | 63 | 24 | 54
51 | 0.50 | 45 | 1.98 | 98
80 | 75
48 | 0.53 | 47 | | 1.68 | 49 | 13 | 41 | 0.63 | 45
37 | 1.58 | 58 | 48 | 0.65 | 35 | | 1.59 | 32 | 20 | 37 | 0.03 | 29 | 1.41 | 41 | 19 | 0.78 | 22 | | 1.53 | 24 | 24 | 35 | 0.81 | 19 | 1.23 | 23 | 11 | 0.91 | 9 | | 1.40 | 22 | 15 | 28 | 0.78 | 22 | 1.29 | 29 | 13 | 0.83 | 17 | | 1.29 | 39 | -7 | 23 | 0.75 | 25 | 1.34 | 34 | 46 | 0.77 | 23 | | 1.48 | 22 | 22 | 32 | 0.75 | 25 | 1.33 | 33 | 15 | 0.79 | 21 | | 1.37 | 24 | 10 | 27 | 0.77 | 23 | 1.30 | 30 | 18 | 0.80 | 20 | | 1.39 | 29 | 8 | 28 | 0.75 | 25 | 1.34 | 34 | 23 | 0.79 | 21 | | 1.31 | 14 | 14 | 24 | 0.82 | 18 | 1.22 | 22 | 10 | 0.86 | 14 | | 1.59 | 57 | 1 | 37 | 0.64 | 36 | 1.56 | 56 | 55 | 0.66 | 34 | | 1.99 | 46 | 36 | 50 | 0.59 | 41 | 1.69 | 69 | 30 | 0.62 | 38 | | 1.89 | 48 | 27 | 47 | 0.63 | 37 | 1.60 | 60 | 26 | 0.66 | 34 | | 1.77 | 42 | 25 | 43 | 0.66 | 34 | 1.51 | 51 | 23 | 0.69 | 31 | | 1.50 | 40 | 7 | 33 | 0.69 | 31 | 1.45 | 45 | 36 | 0.74 | 26 | | 1.94 | 44 | 34 | 48 | 0.61 | 39 | 1.65 | 65 | 28 | 0.63 | 37 | | 1.53 | 30 | 17 | 35 | 0.71 | 29 | 1.41 | 41 | 21 | 0.73 | 27 | | 1.58 | 46 | 8 | 37 | 0.68 | 32 | 1.47 | 47 | 36 | 0.74 | 26 | | 1.58 | 58 | 0 | 37 | 0.63 | 37 | 1.58 | 58 | 58 | 0.66 | 34 | | 2.21 | 58 | 40 | 55 | 0.67 | 33 | 1.50 | 50 | 22 | 0.81 | 19 | | 2.13 | 51 | 41 | 53 | 0.56 | 44 | 1.78 | 78 | 34 | 0.59 | 41 | | 1.94 | 44 | 34 | 48 | 0.60 | 40 | 1.66 | 66 | 29 | 0.62 | 38 | | uncorrected | uncorrected | corrected | corrected | corrected | corrected | corrected | |--------------|-----------------|--|-------------------|-----------------|-------------------|----------------| | transport- | parallel | parallel | parallel | parallel | parallel | normal | normal | | stretch | lengthening (%) | lengthening (%) | lengthening (%) | lengthening (%) | shortening (%) | shortening (%) | | (high Wm) | (high Wm) | (high Wm) | (middle of range) | (error range) | (middle of range) | (error range) | | 1.76 | 76 | 76 | 77.5 | 1.5 | 43.6 | 0.5 | | 1.16 | 16 | 8 | 11.5 | 3.5 | 19.7 | 5.8 | | 1.10 | 10 | 4 | 8.0 | 4.0 | 13.6 | 4.5 | | 1.07 | 7 | 2 | 7.0 | 5.0 | 13.6 | 7.2 | | 0.73 | -27 | | | | | | | 0.86 | -14 | 0 | 1.0 | 1.0 | -5.8 | 9.9 | | 1.13 | 13 | 5 | 9.5 | 4.5 | 18.1 | 6.3 | | 2.00 | 100 | 68 | 68.5 | 0.5 | 49.9 | 0.1 | | 0.69 | -31 | 33 | 34.0 | 1.0 | 20.1 | 0.7 | | 1.62
1.45 | 62
45 | 23 | 26.5 | 1.0
3.5 | 39.1
33.0 | 2.0 | | 1.43 | 91 | 80 | 80.5 | 0.5 | 48.2 | 0.5 | | 1.86 | 86 | 86 | 90.0 | 4.0 | 47.2 | 1.1 | | 2.86 | 186 | 141 | 143.0 | 2.0 | 65.3 | 0.3 | | 1.84 | 84 | 67 | 67.5 | 0.5 | 46.1 | 0.5 | | 1.81 | 81 | 40 | 41.5 | 1.5 | 45.3 | 0.5 | | 1.99 | 99 | 111 | 114.0 | 3.0 | 50.2 | 0.5 | | 1.13 | 13 | 5 | 7.5 | 2.5 | 14.5 | 2.8 | | 1.03 | 3 | 2 | 8.5 | 6.5 | 9.7 | 6.6 | | 0.34 | -66 | (*** ********************************* | | | | 5.0 | | 0.05 | -95 | | | | | | | 1.72 | 72 | 48 | 48.5 | 0.5 | 42.0 | 0.2 | | 1.68 | 68 | 30 | 30.5 | 0.5 | 41.4 | 0.9 | | 1.52 | 52 | 60 | 63.0 | 3.0 | 35.8 | 1.5 | | 1.47 | 47 | 22 | 27.5 | 5.5 | 35.6 | 3.8 | | 0.59 | -41 | | | | | | | 1.04 | 4 | 2 | 6.5 | 4.5 | 11.4 | 7.2 | | 0.69 | -31 | | | | | | | 0.05 | -95 | | | | | | | 1.14 | 14 | 6 | 11.0 | 5.0 | 15.5 | 3.4 | | 1.32 | 32 | 14 | 14.5 | 0.5 | 24.9 | 0.5 | | 0.05 | -95 | | | | | | | 0.79 | -21 | | | | | | | 1.05 | 5 | 2 | 11.0 | 9.0 | 12.1 | 7.6 | | 1.29 | 29 | 12 | 13.5 | 1.5 | 23.8 | 1.5 | | 0.04 | -96 | | | | | | | 1.38 | 38 | 22 | 23.5 | 1.5 | 28.3 | 1.0 | | 0.88 | -12 | 0 | 0.5 | 0.5 | -6.0 | 7.3 | | 0.69 | -31 | | | | | | | 1.44 | 44 | 30 | 31.0 | 1.0 | 30.8 | 0.2 | | 1.64 | 64 | 58 | 60.0 | 2.0 | 40.2 | 1.2 | | 0.92 | -8 | 0 | 2.5 | 2.5 | 0.7 | 10.0 | | 0.85 | -15 | 0 | 1.5 | 1.5 | -6.2 | 12.1 | | 1.97 | 97 | 139 | 158.0 | 19.0 | 53.0 | 3.8 | | 1.32 | 32 | 51 | 61.5 | 10.5 | 28.4 | 4.4 | | 2.14 | 114 | 113 | 113.5 | 0.5 | 53.3 | 0.0 | | 2.40 | 140 | 82 | 84.0 | 2.0 | 58.9 | 0.5 | | 1.90 | 90 | 68
45 | 71.5 | 3.5 | 48.5 | 1.1 | | 1.76 | 76
54 | 45
37 | 46.5
39.0 | 1.5
2.0 | 43.9
35.8 | 0.7
0.9 | | 1.54
1.29 | 29 | 13 | 39.0
16.0 | 3.0 | 35.8
25.7 | 3.3 | | 1.29 | 9 | 4 | 7.5 | 3.5 | 13.6 | 5.1 | | 1.09 | 20 | 10 | 7.5
11.5 | 3.5
1.5 | 19.5 | 2.7 | | 1.31 | 31 | 42 | 44.0 | 2.0 | 24.4 | 0.9 | | 1.26 | 26 | 13 | 14.0 | 1.0 | 22.9 | 2.1 | | 1.25 | 25 | 14 | 16.0 | 2.0 | 21.7 | 1.6 | | 1.26 | 26 | 18 | 20.5 | 2.5 | 23.1 | 2.3 | | 1.16 | 16 | 6 | 8.0 | 2.0 | 16.0 | 2.4 | | 1.51 | 51 | 52 | 53.5 | 1.5 | 34.8 | 1.0 | | 1.62 | 62 | 28 | 29.0 | 1.0 | 39.6 | 1.2 | | 1.52 | 52 | 23 | 24.5 | 1.5 | 35.8 | 1.5 | | 1.44 | 44 | 21 | 22.0 | 1.0 | 32.2 | 1.6 | | 1.36 | 36 | 28 | 32.0 | 4.0 | 28.7 | 2.3 | | 1.60 | 60 | 26 | 27.0 | 1.0 | 38.3 | 0.9 | | 1.38 | 38 | 18 | 19.5 | 1.5 | 28.3 | 1.0 | | 1.34 | 34 | 27 | 31.5 | 4.5 | 28.9 | 3.3 | | 1.51 | 51 | 51 | 54.5 | 3.5 | 35.3 | 1.5 | | 1.24 | 24 | 11 | 16.5 | 5.5 | 26.3 | 7.1 | | 1.70 | 70 | 31 | 32.5 | 1.5 | 42.5 | 1.2 | | 1.62 | 62 | 27 | 28.0 | 1.0 | 39.1 | 0.7 | **Discussion S8:** Compilation of shear-sense data, and estimation of structural height relative to the MCT. Table S8 shows a compilation of new and published shear-sense indicators observed within outcrops and thin sections from central Bhutan. These data are plotted on Figure 12F in a frequency histogram of total top-to-south and top-to-north shear-sense indicators observed versus structural height relative to the MCT. Structural heights were estimated in a similar manner to the P-T and strain samples.
Localities from the Shemgang transect from Long and McQuarrie (2010) were projected onto the Mangde Chu cross-section of Long et al. (2011b), localities from the Sarpang transect were projected onto the Sarpang cross-section of Long et al. (2016), and localities from the Dang Chu transect were measured off of the tectonostratigraphic column from this study. Similar to the P-T samples, 5.7 km was added to heights relative to the base of the Chekha Formation for the Dang Chu localities, in order to approximate their height above the MCT. **Table S8** (following two pages): Compilation of data source, location, map unit, type, and shear direction information for outcrop- and thin section-scale shear-sense indicators observed in central Bhutan. | | | SCHISE | GIIIII | 3.10 | 20.0002 | 27.00009 | | | CTC | FOUR BUILD (SOLD) | Supling | |---|---|---------------------|---------------|-------------|------------|------------|--------------|--------------|--------|---------------------------|----------| | outcrop
thin section
thin section | SC fabric | quartzite | GHImu | 2.80 | 90.63397 | 27.05200 | | | 513 | Long and McQuarrie (2010) | Shemgang | | outcrop
thin section | rotated biotite porphyroblast | paragneiss | GHlmu | 2.70 | 90.63500 | 27.04964 | | BU08-78 | 512 | Long and McQuarrie (2010) | Shemgang | | | rotated garnet porphyroblast | paragneiss | GHlmu | 1.85 | 90.62714 | 27.03694 | | BU08-77 | 511 | Long and McQuarrie (2010) | Shemgang | | | feldspar σ-clasts | orthogneiss | GHIO | 1.75 | 90.62361 | 27.02833 | | | 510 | Long and McQuarrie (2010) | Shemgang | | outcrop | feldspar o-clasts | orthogneiss | GHIo | 1.50 | 90.61506 | 27.01953 | | | 509 | Long and McQuarrie (2010) | Shemgang | | thin section | C'-type shear band | schist | GHIO | 1.40 | 90.58108 | 27.01053 | | BU08-75 | 507 | Long and McQuarrie (2010) | Shemgang | | Olitoron | SC fabric | schist | Chekha | 5 40 | 90 70467 | 27 13739 | | 0000 | 470 | Long and McOuarrie (2010) | Shemgang | | thin section | asymmetric told | paragneiss | GHIMU | 5.20 | 90./3686 | 27.12083 | | BU08-54 | 4/3 | Long and McQuarrie (2010) | Shemgang | | thin section | mica fish | schist | GHIO | 0.25 | 90.78850 | 27.04939 | | BU08-48 | 467 | Long and McQuarrie (2010) | Shemgang | | thin section | SC fabric | phyllite | Manas | -4.45 | 90.26447 | 26.86922 | 1A | BU10-9A | 1 | Long et al. (2016) | Sarpang | | thin section | SC fabric | phyllite | Manas | -3.40 | 90.26917 | 26.88669 | 5A | BU10-10A | 5 | Long et al. (2016) | Sarpang | | thin section | C'-type shear band | phyllite | Manas | -2.45 | 90.21214 | 26.91539 | 00 | BU14-23AA | 00 | Long et al. (2016) | Sarpang | | thin section | quartz σ-clast | phyllite | Daling | -2.30 | 90.21081 | 26.90028 | 11A | BU14-24BA | 11 | Long et al. (2016) | Sarpang | | pole plot | asymmetric quartz c axis fabric | quartzite | Daling | -2.20 | 90.20828 | 26.90083 | 12A | BU14-22AA | 12 | Long et al. (2016) | Sarpang | | outcrop | SC fabric | phyllite | Daling | -1.95 | 90.20681 | 26.90622 | | | 15 | Long et al. (2016) | Sarpang | | thin section | C'-type shear band | schist | Daling | -1.50 | 90.20750 | 26.91033 | 17 | BU14-18A | 17 | Long et al. (2016) | Sarpang | | pole plot | asymmetric quartz c axis fabric | quartzite | Daling | -1.30 | 90.20897 | 26.91231 | 18A | BU14-17 | 18 | Long et al. (2016) | Sarpang | | pole plot | asymmetric quartz c axis fabric | quartzite | Jaishidanda | -0.70 | 90.20367 | 26.91653 | 21A | BU14-14A | 21 | Long et al. (2016) | Sarpang | | thin section | C'-type shear bands, mica fish | schist | Jaishidanda | -0.70 | 90.20367 | 26.91653 | 22 | BU14-14BA | 22 | Long et al. (2016) | Sarpang | | pole plot | asymmetric quartz c axis fabric | quartzite | Jaishidanda | -0.55 | 90.20361 | 26.91817 | 23A | BU14-12A | 23 | Long et al. (2016) | Sarpang | | thin section | rotated garnet | schist | Jaishidanda | -0.55 | 90.20361 | 26.91817 | 24 | BU14-12BA | 24 | Long et al. (2016) | Sarpang | | thin section | C'-type shear bands, mica fish | schist | Jaishidanda | -0.40 | 90.20658 | 26.92081 | 25 | BU14-11A | 25 | Long et al. (2016) | Sarpang | | pole plot | asymmetric quartz c axis fabric | quartzite | Jaishidanda | -0.10 | 90.20944 | 26.92542 | 29A | BU14-6A | 29 | Long et al. (2016) | Sarpang | | outcrop | SC fabric, asymmetric folds | schist | Jaishidanda | -0.10 | 90.20944 | 26.92542 | | | 29 | Long et al. (2016) | Sarpang | | pole plot | asymmetric quartz c axis fabric | quartzite | Jaishidanda | -0.05 | 90.20681 | 26.92519 | 31A | BU14-10A | 31 | Long et al. (2016) | Sarpang | | outcrop | feldspar σ-clasts | orthogneiss | GHImi | 0.40 | 90.22136 | 26.93011 | | | 37 | Long et al. (2016) | Sarpang | | outcrop | feldspar o-clast | schist | GHImi | 0.75 | 90.22458 | 26.93789 | į | | | Long et al. (2016) | Sarpang | | thin section | rotated hematite porphyroblasts | phyllite | Maneting | 10.65 | 90.20075 | 27.64314 | 74A | BU14-74A | 74 | this study | Dang Chu | | outcrop | asymmetrically-sneared boudinage | quartzite | Desnichiling | 10.40 | 90.2025 | 27.62561 | | | 977 | this study | Dang Chu | | outcrop | asymmetrically-sheared boudinage | quartzite | Deshichilling | 10.40 | 90.19764 | 27.62661 | | | 126 | this study | Dang Chu | | thin section | SC fabric, asymmetrically-sheared boudinage | phyllite | Deshichilling | 9.70 | 90.19183 | 27.61111 | 125A | BU13-125A | 125 | this study | Dang Chu | | thin section | SC fabric | phyllitic quartzite | Deshichilling | 8.45 | 90.18742 | 27.58814 | 79A | BU14-79A | 79 | this study | Dang Chu | | outcrop | asymmetrically-sheared boudinage | marble | Chekha | 7.20 | 90.17144 | 27.54450 | | | 81 | this study | Dang Chu | | outcrop | asymmetric fold | marble | Chekha | 7.15 | 90.16672 | 27.53983 | | | 120 | this study | Dang Chu | | outcrop | asymmetric fold | marble | Chekha | 7.15 | 90.16672 | 27.53983 | | | 120 | this study | Dang Chu | | thin section | SC fabric | phyllitic quartzite | Chekha | 7.15 | 90.16672 | 27.53983 | 120B | BU13-120B | 120 | this study | Dang Chu | | thin section | rotated biotite porphyroblast | phyllitic quartzite | Chekha | 6.95 | 90.13567 | 27.54747 | 118A | BU13-118A | 118 | this study | Dang Chu | | outcrop | asymmetric fold | marble | Chekha | 6.85 | 90.13494 | 27.54644 | | | | this study | Dang Chu | | thin section | asymmetric folds, rotated garnet porphyroblasts | phyllite | Chekha | 6.40 | 90.09447 | 27.51236 | 114 | BU13-114 | 114 | this study | Dang Chu | | thin section | C'-type shear bands | nhyllite | Chekha | 6.40 | 90 06475 | 27 50311 | 130R | RI 113-130R | 130 | this study | Dang Chu | | Olitcon | asymmetrically-sheared houdinage | schist | Chekha | 615 | 90 09767 | 27 52111 | 1107, 0 | 2013 1100, 0 | 290 | this study | Dang Chu | | thin section | so fabric | Scriist | Chekha | n 0.70 | 90.03630 | 27.49942 | 1164 6 | BU13-116A C | 116 | this study | Dang Chu | | this costic | o-objects (ledcosonies) | paragnetss | Chokha | £ 75 | 90.05850 | 27.49//2 | 1318 | BII13 131B | 131 | this study | Dang Chu | | outcrop | o-objects (leucosomes) | paragneiss | GHImu | 4.70 | 90.031/8 | 27.4984/ | | | 113 | this study | Dang Chu | | outcrop | o-objects (leucosomes), C-type snear band | paragneiss | GHIMU | 4.60 | 90.03136 | 27.49856 | | | 111 | this study | Dang Chu | | outcrop | C'-type shear band | orthogneiss | GHIO | 3.55 | 90.00622 | 27.50333 | | | 109 | this study | Dang Chu | | outcrop | C'-type shear band | orthogneiss | GHIO | 3.55 | 90.00622 | 27.50333 | | | 109 | this study | Dang Chu | | | σ-objects (leucosomes) | paragneiss | GHIo | 2.95 | 89.98214 | 27.50481 | | | 108 | this study | Dang Chu | | | σ-objects (leucosomes) | paragneiss | GHIO | 2.95 | 89.98214 | 27.50481 | | | 108 | this study | Dang Chu | | outcrop | C'-type shear bands, feldspar o-clasts | orthogneiss | GHIo | 2.65 | 89.96292 | 27.50575 | | | 107 | this study | Dang Chu | | outcrop | asymmetric fold | paragneiss | GHIml | 0.45 | 89.90569 | 27.48494 | | | 103 | this study | Dang Chu | | | shear-sense indicator type | lithology | map unit | to MCT (km) | (dd.ddddd) | (dd.ddddd) | number | number | number | source | transect | | observed | | | | relative | longitude | latitude | thin section | thin section | stop | data | | | top-to-north | outcrop | asymmetric folds | schist | Chekha | 6.90 | 90.28967 | 27.51108 | | | Long and McQuarrie (2010) | Shemgang | |--------------|--------------|-------------------------------|-------------|----------|------|----------|----------|----------|-----|---------------------------|----------| | | outcrop | SC fabric | schist | Chekha | 7.20 | 90.25553 | 27.51767 | | | Long and McQuarrie (2010) | Shemgang | | 3 | thin section | rotated garnet porphyroblasts | quartzite | Chekha | 6.30 | 90.60458 | 27.30569 | BU08-99 | 158 | Long and McQuarrie (2010) | Shemgang | | _ | thin section | asymmetric folds | schist | GHlmu | 5.35 | 90.59397 | 27.33431 | BU08-101 | 154 | Long and McQuarrie (2010) | Shemgang | | | outcrop | outcrop-scale duplex | quartzite | GHlmu | 4.05 | 90.50883 | 27.41461 | | 146 | Long and McQuarrie (2010) | Shemgang | | | outcrop | SC fabric | schist | GHlmu | 4.75 | 90.53150 | 27.39489 | | 147 | Long and McQuarrie (2010) | Shemgang | | | outcrop | SC fabric | schist | GHlmu | 4.90 | 90.52844 | 27.37783 | | 148 | Long and McQuarrie (2010) | Shemgang | | | outcrop | asymmetric folds | quartzite | GHlmu | 4.40 | 90.52664 | 27.37158 | | 150 | Long and McQuarrie (2010) | Shemgang | | | outcrop | SC fabric | quartzite | GHlmu | 4.40 | 90.52664 | 27.37158 | | 150 | Long and McQuarrie (2010) | Shemgang | | | outcrop | asymmetric folds | schist | GHlmu | 4.10 | 90.54006 | 27.36603 | | 540 | Long and McQuarrie (2010) | Shemgang | | | outcrop | SC fabric | schist | GHlmu | 4.00 | 90.53422 | 27.41278 | | 541 | Long and McQuarrie (2010) | Shemgang | | | thin section | rotated garnet porphyroblasts | schist | GHlmu | 4.45 | 90.47497 |
27.44928 | BU08-109 | 542 | Long and McQuarrie (2010) | Shemgang | | | outcrop | asymmetric folds | schist | GHlmu | 4.40 | 90.50097 | 27.46367 | | 140 | Long and McQuarrie (2010) | Shemgang | | | outcrop | feldspar σ-clasts | orthogneiss | GHIo | 3.90 | 90.49061 | 27.47158 | | 139 | Long and McQuarrie (2010) | Shemgang | | | thin section | mica fish | paragneiss | GHIo | 2.65 | 90.51094 | 27.48911 | BU08-111 | 136 | Long and McQuarrie (2010) | Shemgang | | | outcrop | σ-object (leucosome) | paragneiss | GHIo | 2.65 | 90.51094 | 27.48911 | | 136 | Long and McQuarrie (2010) | Shemgang | | | thin section | rotated biotite porphyroblast | phyllite | Maneting | 7.80 | 90.67039 | 27.20875 | BU08-93 | 534 | Long and McQuarrie (2010) | Shemgang | | | thin section | rotated garnet porphyroblast | phyllite | Maneting | 7.80 | 90.71044 | 27.20494 | BU08-90 | 528 | Long and McQuarrie (2010) | Shemgang | | | thin section | asymmetric folds | phyllite | Maneting | 7.70 | 90.72422 | 27.19322 | BU08-89 | 527 | Long and McQuarrie (2010) | Shemgang | | | outcrop | SC fabric | quartzite | Chekha | 7.50 | 90.69450 | 27.19347 | | 531 | Long and McQuarrie (2010) | Shemgang | | | outcrop | SC fabric | quartzite | Chekha | 6.90 | 90.69958 | 27.16092 | | 524 | Long and McQuarrie (2010) | Shemgang | | | outcrop | SC fabric, multiple places | quartzite | Chekha | 6.90 | 90.69958 | 27.16092 | | 524 | Long and McQuarrie (2010) | Shemgang | | | outcrop | asymmetric folds, SC fabric | schist | Chekha | 5.50 | 90.66094 | 27.12817 | | 521 | Long and McQuarrie (2010) | Shemgang | | | thin section | rotated biotite porphyroblast | schist | GHlmu | 5.30 | 90.67347 | 27.12064 | BU08-66 | 486 | Long and McQuarrie (2010) | Shemgang | | | outcrop | asymmetric fold | schist | GHlmu | 5.25 | 90.64817 | 27.11503 | | 520 | Long and McQuarrie (2010) | Shemgang | | | thin section | rotated biotite porphyroblast | schist | GHlmu | 5.25 | 90.64817 | 27.11503 | BU08-85 | 520 | Long and McQuarrie (2010) | Shemgang | | | thin section | SC fabric | quartzite | GHlmu | 5.20 | 90.65803 | 27.11083 | BU08-84 | 519 | Long and McQuarrie (2010) | Shemgang | | | outcrop | asymmetric fold | schist | GHlmu | 3.90 | 90.64319 | 27.08303 | | 517 | Long and McQuarrie (2010) | Shemgang | | 378 | References cited | |-----|--| | 379 | | | 380 | Beyssac, O., Goffe, B., Petitet, J.P., Froigneux, E., Moreau, M., and Rouzaud, J.N., 2003, On the | | 381 | characterization of disordered and heterogeneous carbonaceous materials by Raman | | 382 | spectroscopy: Spectrochimica Acta Part A, v. 59, p. 2267–2276, doi: 10.1016/S1386- | | 383 | 1425(03)00070-2. | | 384 | | | 385 | Bhattacharyya, K., Mitra, G., and Kwon, S., 2015, Geometry and kinematics of the Darjeeling- | | 386 | Sikkim Himalaya, India: Implications for the evolution of the Himalayan fold-thrust belt: Journal | | 387 | of Asian Earth Sciences, v. 113, p. 778-796, doi: 10.1016/j.jseaes.2015.09.008. | | 388 | | | 389 | Cooper, F.J., Hodges, K.V., and Adams, B.A., 2013, Metamorphic constraints on the character | | 390 | and displacement of the South Tibetan fault system, central Bhutanese Himalaya: Lithosphere, $\boldsymbol{v}.$ | | 391 | 5, p. 67–81, doi: 10.1130/L221.1. | | 392 | | | 393 | Corrie, S.L., Kohn, M.J., McQuarrie, N., and Long, S.P., 2012, Flattening the Bhutan Himalaya: | | 394 | Earth and Planetary Science Letters, v. 349-350, p. 67-74, doi:10.1016/j.epsl.2012.07.001. | | 395 | | | 396 | Dunnet, D., 1969, A technique for finite strain analysis using elliptical particles: Tectonophysics, | | 397 | v. 7, p. 117-136. | | 398 | | | 399 | Fossen, H., and Tikoff, B., 1993, The deformation matrix for simultaneous simple shearing, pure | | 400 | shearing and volume change, and its application to transpression-transtension tectonics: Journal | | 401 | of Structural Geology, v. 15, p. 413–422. | | 402 | | | 403 | Greenwood, L.V., Argles, T.W., Parrish, R.R., Harris, N.B.W. and Warren, C., 2016, The | | 404 | geology and tectonics of central Bhutan: Journal of the Geological Society, v. 173, p. 352-369, | | 405 | doi: 10.1144/jgs2015-031. | | 406 | | | 407 | Grujic, D., Warren, C.J., and Wooden, J.L., 2011, Rapid synconvergent exhumation of Miocene- | - aged lower and orogenic crust in the eastern Himalaya: Lithosphere, v. 3, p. 346-366, doi: - 409 10.1130/L154.1. - Holdaway, M.J., 2000, Application of new experimental and garnet Margules data to the garnet- - biotite geothermometer: American Mineralogist, v. 85, p. 881–892. 413 - Holland, T.J.B., and Powell, R., 2011, An improved and extended internally consistent - 415 thermodynamic dataset for phases of petrological interest, involving a new equation of state for - 416 solids: Journal of Metamorphic Geology, v. 29, p. 333-383, doi: 10.1111/j.1525- - 417 1314.2010.00923.x 418 - Law, R.D., 2010, Moine thrust zone mylonites at the Stack of Glencoul: II results of vorticity - analyses and their tectonic significance, in Continental Tectonics and Mountain Building The - Legacy of Peach and Horne, edited by R.D. Law, R.W.H. Butler, R. Holdsworth, M. - 422 Krabbendam, and R.A. Strachan, Geological Society of London Special Publication, v. 335, p. - 423 579-602, doi: 10.144/SP335.24. 424 - 425 Lisle, R.J., 1977, Estimation of the tectonic strain ratio from the mean shape of deformed - 426 elliptical markers: Geologie en Mijnbouw, v. 56, p. 140-144. 427 - Lisle, R.J., 1979, Strain analysis using deformed pebbles: the influence of initial pebble shape: - 429 Tectonophysics, v. 60, p. 263-277. 430 - Long, S., and McQuarrie, N., 2010, Placing limits on channel flow: insights from the Bhutan - 432 Himalaya: Earth and Planetary Science Letters, v. 290, p. 375-390, - 433 doi:10.1016/j.epsl.2009.12.033. 434 - Long, S., McQuarrie, N., Tobgay, T., and Grujic, D., 2011b, Geometry and crustal shortening of - 436 the Himalayan fold-thrust belt, eastern and central Bhutan: Geological Society of America - 437 Bulletin, v. 123, p. 1427-1447, doi:10.1130/B30203.1. - Long, S., McQuarrie, N., Tobgay, T., and Hawthorne, J., 2011c, Quantifying internal strain and - deformation temperature in the eastern Himalaya: Implications for the evolution of strain in - thrust sheets: Journal of Structural Geology, v. 32, p. 579-608, doi:10.1016/j.jsg.2010.12.011. - Long, S.P., McQuarrie, N., Tobgay, T., Grujic, D., and Hollister, L., 2011d, Geologic map of - Bhutan: The Journal of Maps, v2011, p. 184-192, 1:500,000-scale, doi:10.4113/jom.2011.1159. 445 - Long, S.P., and Soignard, E., 2016, Shallow-crustal metamorphism during Late Cretaceous - anatexis in the Sevier hinterland plateau: peak temperature conditions from the Grant Range, - eastern Nevada, U.S.A.: Lithosphere, v. 8, p. 150-164, doi: 10.1130/L501.1. 449 - Long, S.P., Gordon, S.M., Young, J.P., and Soignard, E, 2016, Temperature and strain gradients - 451 through Lesser Himalayan rocks and across the Main Central thrust, south-central Bhutan: - implications for transport-parallel stretching and inverted metamorphism: Tectonics, v. 35, doi: - 453 10.1002/2016TC004242. 454 - Powell, R., and Holland, T.J.B., 1994, Optimal geothermometry and geobarometry: American - 456 Mineralogist, v. 79, p. 120-133. 457 - Rahl, J.M., Anderson, K.M., Brandon, M.T., and Fassoulas, C., 2005, Raman spectroscopic - 459 carbonaceous material thermometry of low-grade metamorphic rocks: Calibration and - application to tectonic exhumation in Crete, Greece: Earth and Planetary Science Letters, v. 240, - 461 p. 339–354, doi: 10.1016/j.epsl.2005.09.055. 462 Ramsay, J.G., 1967, Folding and fracturing of rocks: McGraw-Hill, New York, 560 p. 464 - Ramsay, J.G, and Huber, M.I., 1983, Techniques of Modern Structural Geology, Vol. 1: Strain - 466 Analysis: Academic Press, London, 307 p. - Schelling, D., and Arita, K., 1991, Thrust tectonics, crustal shortening, and the structure of the - 469 far-eastern Nepal Himalaya: Tectonics, v. 10, p. 851–862, doi: 10.1029/91TC01011. 470 471 Tikoff, B., and Fossen, H., 1995, The limitations of three-dimensional kinematic vorticity 472 analysis: Journal of Structural Geology, v. 12, p. 1771–1784. 473 474 Whitney, D.L., and Evans, B.W., 2010, Abbreviations for names of rock-forming minerals: American Mineralogist, v. 95, p. 185–187. 475 476 477 Xypolias, P., Spanos, D., Chatzaras, V., Kokkalas, S., and Koukouvelas, I., 2010, Vorticity of 478 flow in ductile thrust zones: examples from the Attico-Cycladic Massif (Internal Hellenides, 479 Greece): in Continental Tectonics and Mountain Building - The Legacy of Peach and Horne, edited by R.D. Law, R.W.H. Butler, R. Holdsworth, M. Krabbendam, and R.A. Strachan, 480 Geological Society of London Special Publication, v. 335, p. 687-714, doi: 10.144/SP335.24. 481 482 Yonkee, A., 2005, Strain patterns within part of the Willard thrust sheet, Idaho-Wyoming-Utah 483 thrust belt: Journal of Structural Geology, v. 27, p. 1315-1343. 484