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ABSTRACT

Documenting the tectono-​thermal evolution of the exhumed ductile 
portions of orogenic systems is critical for interpreting orogen dynamics. 
Here, we utilize Raman spectroscopy of carbonaceous material thermom-
etry to quantify the thermal architecture of the Salmon River suture zone 
in west-​central Idaho, USA, which records the Cretaceous collision of the 
Wallowa island arc terrane with North America. We integrate this thermal 
architecture with published structural interpretations, geochronology, and 
pressure-​temperature-​time histories to interpret the evolution of defor-
mation during arc-​continent collision in this portion of the North America 
Cordillera. Mean peak temperatures within four, ~1–​3-km-​thick, pene-
tratively deformed thrust sheets in the western part of the suture zone 
decrease moving structurally downward from 652 ± 28 °C (Pollock Moun-
tain thrust sheet), to 577 ± 30 °C (Rapid River thrust sheet), to 426 ± 32 °C 
(Morrison Ridge thrust sheet), to 358 ± 18 °C (Heavens Gate thrust sheet). 
These ductile thrust sheets are separated by 100–​500-m-​thick intervals of 
inverted temperatures that surround the mapped positions of thrust faults. 
We interpret the western part of the suture zone as a ductile accretionary 
complex that records the progressive underplating and top-​to-​the-​west 
translation of ductile thrust sheets that were derived from the Wallowa 
terrane during ca. 144–​105 Ma collision-​related deformation. Accretion of 
ductile thrust sheets began at ~30–​35 km depths and completed at depths 
of ~10–​20 km. Rocks at all structural levels in the suture zone exhibit dis-
tributed ductile fabrics, but the inverted thermal gradients that surround 
the mapped positions of thrust faults suggest that the majority of top-​
to-​the-​west displacement was accommodated within 100–​500-m-​thick, 
high-​strain, thrust-​sense ductile shear zones.

■■ 1. INTRODUCTION

Documenting the evolution of deformation within contractional orogenic 
systems, including the dominant processes of mass transfer, the kinematic 
components of the strain field, and the space-​time framework of key meta-
morphic and structural events, is an essential prerequisite for interpreting 
deformation in the context of orogen dynamics (e.g., Dahlstrom, 1969; Price, 
1981; Davis et al., 1983; Dahlen, 1990; Beaumont et al., 2001; Kohn, 2014; Yon-
kee and Weil, 2015). However, this exercise can be challenging within the 
exhumed ductile portions of orogenic belts, where strain can be heteroge-
neously partitioned into localized (e.g., displacement within high-​strain ductile 
shear zones) and spatially dispersed (e.g., micro- to meso-​scale deformation 
that produces distributed ductile fabrics) components, which can make kine-
matic paths difficult to discern (e.g., Ramsay, 1969; Sanderson, 1982; Fossen 
and Tikoff, 1993; Means, 1994; Mitra, 1994; Goodwin and Tikoff, 2002; Yonkee, 
2005). One approach that can effectively complement structural analysis of 
ductile orogenic belts is the quantification of the orogenic thermal architecture 
(i.e., the spatial patterns of peak metamorphic temperatures preserved within 
thrust sheets and across major thrust faults and shear zones). Modeling-​based 
insights into the thermal regimes that arise within collisional orogenic systems 
(e.g., Henry et al., 1997; Huerta et al., 1998; Beaumont et al., 2004; Dymkova 
et al., 2016) allow utilizing the thermal architecture of the ductile portion of 
an orogenic belt, including the spatial extent and magnitudes of intervals of 
inverted metamorphism, as a valuable tool to help elucidate the distribution 
of strain and the relative magnitude of displacement on major structures (e.g., 
Bollinger et al., 2004; Corrie and Kohn, 2011; Long et al., 2016; Grujic et al., 2020).

The Jurassic–​Paleogene North American Cordillera, which was constructed 
as a consequence of east-​directed subduction beneath the North American 
continental plate, has been the source of important models for fold-​thrust 
belts, foreland basins, and terrane accretion that have been exported globally 
to understand other active and ancient orogens (e.g., Burchfiel and Davis, 
1972, 1975; Coney et al., 1980; Price, 1981; Oldow et al., 1989; Allmendinger, 
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1992; Burchfiel et al., 1992; DeCelles, 2004; Dickinson, 2004; Evenchick et al., 
2007; Yonkee and Weil, 2015). The western portion of the Cordillera consists 
of a complex patchwork of lithotectonic terranes that were accreted to the 
western edge of North America during Mesozoic subduction (e.g., Coney et 
al., 1980; Monger et al., 1982; Dickinson, 2004; Nelson et al., 2013). These ter-
ranes, which consist of a series of late Paleozoic to Mesozoic island arcs and 
accretionary complexes, form a critically important province of the Cordillera, 
and investigations of their complex histories of collision and margin-​parallel 
translation have illuminated the paleogeography and tectonic dynamics of the 
eastern Pacific realm (e.g., Jones et al., 1977; Rusmore et al., 1988; Edelman 
and Sharp, 1989; McClelland et al., 1992; Avé Lallemant, 1995; Wyld and Wright, 
2001; Evenchick et al., 2007; Dickinson, 2008; Ernst et al., 2008; LaMaskin et 
al., 2011; Riddell, 2011).

In west-​central Idaho, the Salmon River suture zone demarcates the bound-
ary between rocks of North American affinity on the east and accreted rocks 
of the Wallowa island arc terrane, which is the northernmost of four mapped 
terranes of the Blue Mountains Province, on the west (Fig. 1A) (e.g., Hamilton, 
1969; Vallier, 1977; Silberling et al., 1984; Lund and Snee, 1988; Selverstone 
et al., 1992; Schwartz et al., 2010; LaMaskin et al., 2015). Accretion of the Wal-
lowa terrane onto the western North American margin resulted in Cretaceous 
burial-​related metamorphism and diffuse ductile contractional deformation 
that are observed across the ~30–​40-km-​wide, north-​striking Salmon River 
suture zone (Fig. 1B) (e.g., Selverstone et al., 1992; Getty et al., 1993; Blake 
et al., 2009; McKay et al., 2017; Gray et al., 2020). The suture zone deforms 
accreted metavolcanic and metasedimentary rocks that have been divided into 
lithotectonic packages separated by east-​dipping thrust faults, which transition 
eastward into a domain dominated by syn-​deformational intrusive rocks (e.g., 
Hamilton, 1969; Selverstone et al., 1992; Manduca et al., 1993; Lund, 2004; 
Gray, 2013a, 2013b). However, all structural levels of the suture zone exhibit 
penetrative ductile fabrics, irrespective of their location relative to mapped 
thrust faults (e.g., Blake, 1991; Gray et al., 2020), which brings into question 
the dominant processes of mass transfer, the spatial distribution of strain 
(i.e., distributed versus localized), and the kinematic paths of the lithotectonic 
packages within the suture zone.

In this study, we investigate these questions by integrating structural 
analysis of the Salmon River suture zone with a detailed examination of its 
thermal architecture. We utilize Raman spectroscopy of carbonaceous mate-
rial (RSCM) thermometry to measure peak metamorphic temperatures from 
32 metasedimentary samples collected across the range of structural levels 
exposed in the suture zone, which we integrate with published thermobarom-
etry (Selverstone et al., 1992; McKay, 2011; Bollen, 2015; McKay et al., 2017) 
to quantify temperature patterns within thrust sheets and the spatial extent 
of inverted thermal gradients across mapped thrust faults. We interpret our 
results in the context of published pressure-​temperature-​time data (Lund and 
Snee, 1988; Selverstone et al., 1992; Getty et al., 1993; Snee et al., 1995; McKay 
et al., 2017) in order to elucidate the structural evolution of the suture zone. 
As the Salmon River suture zone represents a well-​characterized case study 

of a ductile accretionary complex constructed during arc-​continent collision, 
insights gained in this study can be applied globally to investigate analogous 
accretionary margins elsewhere.

■■ 2. TECTONOSTRATIGRAPHIC AND TEMPORAL FRAMEWORK OF 
THE SALMON RIVER SUTURE ZONE

The Salmon River suture zone is a north-south–​striking, ~30–​40-km-​wide 
zone of deformation that exhibits pervasive ductile fabrics (Fig. 1B) (e.g., Blake 
et al., 2009; Gray et al., 2020). The suture zone was constructed within a com-
plex geologic framework that included Neoproterozoic–​Paleozoic sedimentary 
rocks of North American (i.e., Laurentian) affinity on the east and structurally 
imbricated Permian–​Jurassic volcanic and sedimentary rocks of the Wallowa 
island arc terrane on the west, as well as pre- and syn-​deformational intrusive 
rocks that span a protracted emplacement history (e.g., Hamilton, 1969; Lund 
and Snee, 1988; Selverstone et al., 1992; Getty et al., 1993; Manduca et al., 
1993; Vallier, 1995; Gray and Oldow, 2005; Blake et al., 2009; McKay et al., 2017; 
Gray et al., 2020). The approximate boundary between Laurentian affinity and 
accreted rocks is interpreted to lie along the initial 87Sr/86Sr (SrI) ~0.706 isopleth 
(Fig. 1), which represents the transition between SrI values ≤0.704 measured in 
Permian–​Cretaceous calc-​alkaline plutons to the west (oceanic crustal affinity) 
and SrI values ≥0.708 measured in Cretaceous calk-​alkaline plutons to the east 
(continental crustal affinity) (Armstrong et al., 1977; Fleck and Criss, 1985, 2004; 
Manduca et al., 1992; Criss and Fleck, 1987).

Here, we describe the tectonostratigraphic packages of the Salmon River 
suture zone that have been defined at the latitude of three across-​strike tran-
sects that we investigated in this study (the Salmon River, Whitebird Ridge, 
and Pollock Mountain transects; Figs. 1–3). Where applicable, we use the 

“thrust sheet” terminology common in fold-​thrust belts (e.g., Boyer and Elliott, 
1982), in which we refer to packages of rock in the Salmon River suture zone 
by the name of the thrust fault mapped at their base. We also summarize 
published constraints on the timing of magmatism, metamorphism, and 
deformation in the suture zone. This discussion is organized from west to east 
and is supported by tectonostratigraphic columns of each transect (Fig. 4) 
and a compilation of published geochronology (Table 1; Fig. 5). Readers are 
referred to Gray and Oldow (2005), Blake et al. (2009), and Gray et al. (2020) for 
detailed descriptions and interpretations of the ductile fabrics of the Salmon 
River suture zone at our studied latitude.

2.1. Heavens Gate Thrust Sheet and Underlying Wallowa Terrane Rocks

Rocks on the eastern flank of Hells Canyon are dominated by lower 
greenschist-​facies andesite, basalt, volcaniclastic rocks, and sedimentary 
rocks of the Triassic Wild Sheep Creek Formation, which are interpreted as 
accreted rocks of the Wallowa terrane (Figs. 1B and 2) (Vallier, 1977, 1995; 
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To view Figure 2 at full size, please visit https://​
doi​.org​/10.1130​/GEOS​.S​.22764377 or access 
the full-​text article on www​.gsapubs​.org.
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TABLE 1. COMPILATION OF PUBLISHED GEOCHRONOLOGY FROM SALMON RIVER SUTURE ZONE SAMPLES,  
LISTED FROM WEST TO EAST FOR EACH OF THE INVESTIGATED TRANSECTS

Dated rock unit Age (Ma) and error Technique Age interpretation Source publication Sample Location relative to section line

Salmon River transect

Wallowa Terrane rocks below Heavens Gate thrust

Granite Creek Pluton 115.3 ± 2.5 K-Ar hornblende, 
biotite

Post-magmatic cooling Vallier (1995) V-3-86 0.5 km to north

Intrusion within unit Trws 123 ± 2.0 U-Pb zircon Magmatic crystallization Casares et al. (2021) SD006 1.5 km to south
Intrusion within unit Trws 120 ± 1.0 U-Pb zircon Magmatic crystallization Casares et al. (2021) SD007 5 km to south
Intrusion within unit Phc 226 ± 10 U-Pb zircon Magmatic crystallization Kauffman et al. (2014) I 15 km to north
Intrusion within unit Trws 137 ± 2.0 U-Pb zircon Magmatic crystallization Casares et al. (2021) SD004 1 km to north
Intrusion within unit Trws 120 ± 1.0 U-Pb zircon Magmatic crystallization Casares et al. (2021) SD008 5 km to south
Intrusion within unit Trws 136 ± 2.0 U-Pb zircon Magmatic crystallization Casares et al. (2021) SD009 4 km to south

Heavens Gate thrust sheet

Heavens Gate stock 135.84 ± 0.07 U-Pb zircon Magmatic crystallization Gray et al. (2020) 06KG15 1.5 km to south
Fish Hatchery stock 130.1 ± 1.9 U-Pb zircon Magmatic crystallization Mann (2018) AM-5 4 km to south

Rapid River thrust sheet

Squaw Creek schist 117.0 ± 0.5 Ar/Ar hornblende Exhumation-related cooling Lund and Snee (1988) R7 Along section line
Squaw Creek schist 124.3 ± 5.8 Sm-Nd garnet Prograde metamorphism McKay et al. (2017) ID26 Along section line
Squaw Creek schist 109.1 ± 0.6 Ar/Ar hornblende Exhumation-related cooling Lund and Snee (1988) R34 4 km to north
Squaw Creek schist 106.5 ± 1.4 Ar/Ar hornblende Exhumation-related cooling Lund and Snee (1988) R18 1.5 km to north
Squaw Creek schist 106.8 ± 0.5 Ar/Ar hornblende Exhumation-related cooling Snee et al. (1995) R17 1.3 km to north
Berg Creek amphibolite 88.2 ± 0.5 Ar/Ar biotite Exhumation-related cooling Lund and Snee (1988) R16 0.5 km to north
Fiddle Creek schist 119.8 ± 6.7 Lu-Hf garnet Prograde metamorphism Gray et al. (2020) JV-003 0.5 km to south
Berg Creek amphibolite 112.5 ± 1.5 Sm-Nd garnet Prograde metamorphism McKay et al. (2017) ID48 Along section line

Pollock Mountain thrust sheet

Dike intruding unit PTrp 90.62 ± 0.23 U-Pb zircon Magmatic crystallization Gray et al. (2020) SHd-04 0.5 km to north
Van Ridge gneiss 82.5 ± 0.4 Ar/Ar biotite Post-magmatic cooling Lund and Snee (1988) R12 2.5 km to north

Intrusive rocks in the eastern part of the Salmon River suture zone

Looking Glass Pluton 91.7 ± 2.4 U-Pb zircon Magmatic crystallization Kauffman et al. (2014) LGp3 Along section line
Crevice Pluton 85.1 ± 0.4 Ar/Ar hornblende Post-magmatic cooling Lund and Snee (1988) R11 0.5 km to south
Crevice Pluton 103.9 ± 2.7 U-Pb zircon Magmatic crystallization Kauffman et al. (2014) CP2 0.5 km to south
Crevice Pluton 108.1 ± 1.8 U-Pb zircon Magmatic crystallization McKay et al. (2017) ID04 0.5 km to south

Idaho Batholith

Western margin of the batholith 76.7 ± 0.4 Ar/Ar muscovite Post-magmatic cooling Lund and Snee (1988) R10 2.5 km to east
Western margin of the batholith 90.4 ± 0.8 U-Pb zircon Magmatic crystallization McKay et al. (2017) PRC01 5 km to east
Western margin of the batholith 75.3 ± 0.4 Ar/Ar muscovite Post-magmatic cooling Lund and Snee (1988) R8 6 km to east
Western margin of the batholith 74.7 ± 0.4 Ar/Ar biotite Post-magmatic cooling Lund and Snee (1988) R8 6 km to east
Western margin of the batholith Ca. 86–93 U-Pb zircon Magmatic crystallization Gray et al. (2020) FC-05 7.5 km to east

Whitebird Ridge transect

Wallowa Terrane rocks below Morrison Ridge thrust

Tonalite intruding unit Twrs 145.1 ± 1.5 Ar/Ar hornblende Post-magmatic cooling Snee et al. (1995) D81-1 1 km to north

Pollock Mountain thrust sheet

Pollock Mountain amphibolite 119 ± 2 Ar/Ar hornblende Exhumation-related cooling Getty et al. (1993) 598 7 km to south
Pollock Mountain amphibolite 128 ± 3 Sm-Nd garnet Prograde metamorphism Getty et al. (1993) 598 7 km to south
Pollock Mountain amphibolite 135 ± 2.4 to 123.9 ± 1.3 Sm-Nd garnet Prograde metamorphism McKay et al. (2017) ID23 7 km to south
Tonalite intruding unit PTrp 117.1 ± 1.8 U-Pb zircon Magmatic crystallization McKay et al. (2017) ID58 Along section line
Pollock Mountain amphibolite 118.0 ± 0.6 Ar/Ar hornblende Exhumation-related cooling Lund and Snee (1988) R30 1 km to east

Pollock Mountain transect

Wallowa Terrane rocks below Morrison Ridge thrust

Echols Mountain pluton 137 ± 4 Ar/Ar hornblende Post-magmatic cooling Armstrong et al. (1977) 1003 1.5 km to north

Pollock Mountain thrust sheet

Pollock Mountain amphibolite 136.9 ± 3.5 Sm-Nd garnet Prograde metamorphism McKay et al. (2017) ID03b 3 km to north
Pollock Mountain amphibolite >144 (core)–136 (rim) Sm-Nd garnet Prograde metamorphism Getty et al. (1993) 422 3.5 km to north
Orthogneiss (unit Trdg) 140.5 ± 3.9 (rims) U-Pb zircon Prograde metamorphism McKay et al. (2017) ID42 3 km to north
Orthogneiss (unit Trdg) 206.3 ± 3.0 (cores) U-Pb zircon Magmatic crystallization McKay et al. (2017) ID42 3 km to north
Orthogneiss (unit Trdg) 204.7 ± 2.6 U-Pb zircon Magmatic crystallization Mann (2018) AM-1 3.5 km to north

Intrusive rocks in the eastern part of the Salmon River suture zone

Hazard Creek complex 113.7 ± 1.6 U-Pb zircon Magmatic crystallization Mann (2018) AM-2 12 km to east and 4 km to south
Hazard Creek complex 107.7 ± 2.9 U-Pb zircon Magmatic crystallization Mann (2018) AM-3 12 km to east and 4 km to south
Hazard Creek complex 114.4 ± 2.2 U-Pb zircon Magmatic crystallization Unruh et al. (2008) K92-8 12 km to east and 2.5 km to south
Hazard Creek complex 112.2 ± 1.6 U-Pb zircon Magmatic crystallization Mann (2018) AM-4 12.5 km to east and 2.5 km to north
Hazard Creek complex 118 ± 5 U-Pb zircon Magmatic crystallization Manduca et al. (1993) 83z9 19 km to east and 5 km to south
Little Goose Creek complex 110 ± 5 U-Pb zircon Magmatic crystallization Manduca et al. (1993) 83z14 23 km to east and 4 km to north
Little Goose Creek complex 105.2 ± 1.5 U-Pb zircon Magmatic crystallization Giorgis et al. (2008) 99mg 24 km to east and 4 km to north

Idaho Batholith

Western margin of the batholith 91.5 ± 1.1 U-Pb zircon Magmatic crystallization Giorgis et al. (2008) 01-53 26 km to east and 2 km to south

Notes: Sample locations are shown on Figures 1–3 (with the exception of Idaho batholith samples from the Salmon River and Pollock Mountain transects and samples from the 
Hazard Creek and Little Goose Creek complexes from the Pollock Mountain transect, which lie to the east and southeast of the area shown on Figure 1B).
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Lund, 1984; Gray and Oldow, 2005; Gray, 2013a; Schmidt et al., 2016). Along 
the Salmon River transect, a 1.2-​km-​thick (note: all thicknesses listed in this 
study are foliation-​normal structural thicknesses) sheet of the Wild Sheep 
Creek Formation that exhibits penetrative ductile fabrics is exposed above 
the east-​dipping Heavens Gate thrust (Figs. 2 and 4A) (Gray and Oldow, 2005; 
Gray, 2013a). The Heavens Gate thrust places penetratively deformed rocks in 
its hanging wall over rocks that preserve original depositional textures in its 
footwall (Gray and Oldow, 2005), which led Gray et al. (2020) to interpret this 
fault as the basal structural level of deformation associated with the Salmon 
River suture zone. Gray et al. (2020) interpreted a top-​to-​the-​west displacement 
sense for the Heavens Gate thrust at the latitude of the Salmon River transect 
based on west-​vergent sigmoidal strain markers and asymmetrically sheared 
conglomerate clasts observed in its hanging wall. The southward continuation 
of the Heavens Gate thrust is uncertain at the latitude of the Whitebird Ridge 
and Pollock Mountain transects (Fig. 1B). Gray et al. (2020) showed the que-
ried trace of the Heavens Gate thrust merging with the Morrison Ridge thrust 
~2 km to the north of the Pollock Mountain transect.

Along the Salmon River transect, a 135.84 ± 0.07 Ma diorite body (U-​Pb 
zircon; Gray, 2013a; Gray et al., 2020) intrudes rocks in the hanging wall of 
the Heavens Gate thrust (Fig. 2). The diorite body exhibits ductile fabrics that 
have been attributed to shearing on the Heavens Gate thrust, which constrains 
thrust displacement as ca. 136 Ma or younger (Gray et al., 2020).

2.2. Morrison Ridge Thrust Sheet

On the Salmon River transect, a 0.5 km cumulative thickness of pene-
tratively deformed Triassic clastic (Lucile Slate), carbonate (Martin Bridge 
Limestone), and volcanic (Wild Sheep Creek Formation) rocks are imbricated 
within a system of closely spaced thrust faults above the Heavens Gate thrust 
sheet (Onasch, 1977, 1987; Sarewitz, 1982; Aliberti, 1988; Gray, 2013a) (Figs. 2 
and 4A). The basal fault of this system is the Morrison Ridge thrust (Gray and 
Oldow, 2005), which places the Martin Bridge Limestone over volcanic rocks 
of the Wild Sheep Creek Formation. Gray and Oldow (2005) interpreted a top-​
to-​the-​west displacement sense for the Morrison Ridge thrust, on the basis 
of west-​vergent isoclinal folds observed in its footwall and hanging wall. On 
the Salmon River transect, two unnamed thrust faults are mapped between 
the Morrison Ridge thrust and the overlying Rapid River thrust (Fig. 2) (Gray, 
2013a). For simplicity, we refer to the entire structurally imbricated package 
of rocks carried between the Morrison Ridge and Rapid River thrusts as the 
Morrison Ridge thrust sheet on the Salmon River transect (Figs. 2 and 4A). 
On the Whitebird Ridge and Pollock Mountain transects, the Morrison Ridge 
thrust carries a sheet of the Martin Bridge Limestone and Lucile Slate that is 
0.8 km thick and 0.4 km thick, respectively (Nandi et al., 2018; DeYoung, 2019) 
(Figs. 3, 4D, and 4E).

Four km to the south of the Salmon River transect, tonalite of the 130.1 
± 1.9 Ma Fish Hatchery Stock (U-​Pb zircon; Gray and Isakson, 2016; Mann, 

2018) intrudes rocks in the footwall of the Morrison Ridge thrust (Fig. 2). The 
structurally highest part of the stock exhibits penetrative ductile fabrics that 
have been attributed to shearing on the Morrison Ridge thrust (Gray and Isak-
son, 2016; Mann, 2018), which constrains thrust displacement as ca. 130 Ma 
or younger (Gray et al., 2020).

2.3. Rapid River Thrust Sheet

The east-​dipping Rapid River thrust (Figs. 1–​3) (e.g., Hamilton, 1963, 1969; 
Onasch, 1987; Aliberti, 1988) structurally bounds the top of the Morrison Ridge 
thrust sheet. The Rapid River thrust was originally mapped by Hamilton (1963, 
1969) at an upward transition in lithology and metamorphic grade defined by 
amphibolite-​facies (garnet-, oligoclase-, and andesine-​bearing) metavolcanic 
and metasedimentary rocks overlying greenschist-​facies marble and phyl-
lite. Hamilton (1969) documented that the Rapid River thrust locally truncates 
the garnet-​in isograd and interpreted it as a top-​to-​the-​west, syn- to post-​
metamorphic structure. The Rapid River thrust carries penetratively deformed 
metavolcanic and metasedimentary rocks that are interpreted to be derived 
from Permian–​Jurassic protoliths of the Wallowa terrane (e.g., Hamilton, 
1963). On the Salmon River transect, the Rapid River thrust sheet is at least 
3.5 km thick (Figs. 2 and 4A–​4C) and is composed of (in ascending order) the 
Fiddle Creek schist (garnet-​muscovite-​biotite schist), Lightning Creek schist 
(chlorite-​muscovite schist, garnet-​biotite-​hornblende schist, and meta-​volcanic 
agglomerate), Berg Creek amphibolite (garnet amphibolite), and Squaw Creek 
schist (hornblende-​biotite schist with local amphibolite) (Blake, 1991; Gray, 
2013b). The Rapid River thrust sheet is folded across the open Riggins syn-
form and the tight Lake Creek antiform (Gray, 2013b) (Figs. 1B and 2), which 
divide the Salmon River transect into a gently east-​dipping western segment, 
a gently west-​dipping central segment, and a steeply east-​dipping eastern 
segment (Figs. 2 and 4A–​4C). The thickness of the Rapid River thrust sheet 
decreases southward to 0.6 km on the Whitebird Ridge transect and 0.3 km 
on the Pollock Mountain transect (Figs. 1, 3, 4D, and 4E). Along these two 
transects, only the Fiddle Creek schist and overlying Squaw Creek schist are 
exposed (Nandi et al., 2018; DeYoung, 2019).

Along the Salmon River transect, prograde metamorphism of rocks in 
the Rapid River thrust sheet is recorded by Sm-​Nd and Lu-​Hf garnet growth 
ages between ca. 130–​111 Ma (Fig. 5A) (McKay et al., 2017; Gray et al., 2020), 
which McKay et al. (2017) interpreted as the timing of structural burial. The 
Rapid River thrust sheet cooled through ~500 °C (40Ar/39Ar hornblende; e.g., 
Dahl, 1996) at ca. 117 Ma in the western part of the sheet and at ca. 111–​105 Ma 
in the central part of the sheet (Fig. 5A) (Lund and Snee, 1988; Snee et al., 
1995). McKay et al. (2017) interpreted that these ages represent the timing of 
exhumation-​related cooling initiated by top-​to-​the-​west displacement on the 
Rapid River thrust. Their interpretation is supported by Selverstone et al. (1992), 
who utilized thermobarometry and the 40Ar/39Ar hornblende ages of Lund and 
Snee (1988) to constrain the P-​T-​t path of rocks in the central part of the Rapid 
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River thrust sheet. Selverstone et al. (1992) documented exhumation from peak 
metamorphic conditions of ~8 kbar and ~550 °C to an episode of retrograde 
metamorphism along the exhumation path at ~6 ± 1 kbar and ~475–​500 °C at 
ca. 111–​105 Ma. This indicates that rocks in the Rapid River thrust sheet had 
experienced ~3.7–​11.1 km of exhumation (assuming a lithostatic gradient of 
3.7 km/kbar) by the time they cooled through ~500 °C at ca. 111–​105 Ma, and 
thus that top-​to-​the-​west displacement on the Rapid River thrust had initiated 
by this time (Selverstone et al., 1992).

2.4. Pollock Mountain Thrust Sheet

The Pollock Mountain thrust (Figs. 1–​3) (e.g., Hamilton, 1969; Aliberti, 1988; 
Blake, 1991; Selverstone et al., 1992) structurally bounds the top of the Rapid 
River thrust sheet. The Pollock Mountain thrust was originally mapped by 
Hamilton (1963, 1969) as an east-​dipping thrust fault in some places and in 
other places as a gradational contact between metavolcanic rocks and an 
overlying package of interlayered amphibolite and intrusive rocks on the east. 
Following this, Selverstone et al. (1992) interpreted the Pollock Mountain thrust 
as a syn- to late-​metamorphic thrust fault or thrust-​sense shear zone that 
placed hanging wall rocks that experienced peak metamorphic conditions of 
~9–​11 kbar and ~600–​625 °C over footwall rocks that experienced ~8 kbar and 
~550 °C. Shear-​sense indicators that are spatially distributed in the hanging 
wall and footwall of the Pollock Mountain thrust are consistent with a top-​to-​
the-​west displacement sense (e.g., Blake, 1991; Blake et al., 2009; McKay et 
al., 2017; Gray et al., 2020). The hanging wall of the Pollock Mountain thrust 
sheet is dominated by upper amphibolite-​facies metaigneous rocks with local 
metasedimentary intervals, which are interpreted to be derived from Permian–​
Triassic protoliths of accreted island arc rocks (e.g., Aliberti, 1988; Blake, 1991; 
Selverstone et al., 1992). The eastern extent of the Pollock Mountain thrust 
sheet can only be approximated by the easternmost exposures of Permian–​
Triassic rocks, as Cretaceous intrusive rocks become volumetrically dominant 
moving eastward (Fig. 1B).

On the Salmon River transect, the Pollock Mountain thrust sheet consists 
of a 1.5-​km-​thick package of garnet amphibolite, biotite-​hornblende gneiss, 
and garnet-​biotite schist (Blake, 1991; Gray, 2013b) (Fig. 4C). On the Whitebird 
Ridge transect, the thrust sheet consists of at least 0.2 km of garnet amphi-
bolite, which is intruded by ca. 117 Ma tonalite (U-​Pb zircon; McKay et al., 
2017; DeYoung, 2019) (Fig. 4D). On the Pollock Mountain transect, the thrust 
sheet consists of at least 1.3 km of interlayered garnet amphibolite and dioritic 
orthogneiss, which locally preserve migmatitic textures (McKay et al., 2017; 
Nandi et al., 2018) (Fig. 4E).

Along the Pollock Mountain and Whitebird Ridge transects, prograde 
metamorphism of rocks in the Pollock Mountain thrust sheet is recorded 
by Sm-​Nd garnet growth ages between ca. 144–​123 Ma (Getty et al., 1993; 
McKay et al., 2017) and U-​Pb zircon metamorphic rim growth between ca. 
144–​137 Ma (McKay et al., 2017) (Fig. 5B). Getty et al. (1993) and McKay et 

al. (2017) interpreted that these ages record the timing of structural burial 
of rocks of the Wallowa terrane during the early stages of its accretion with 
the North American margin. On the Whitebird Ridge transect, rocks in the 
Pollock Mountain thrust sheet cooled through ~500 °C (40Ar/39Ar hornblende) 
between ca. 121–​117 Ma (Fig. 5B) (Lund and Snee, 1988; Getty et al., 1993; 
Snee et al., 1995), which McKay et al. (2017) interpreted to record the timing of 
exhumation-​related cooling initiated by top-​to-​the-​west displacement on the 
underlying Pollock Mountain thrust. Their interpretation is supported by syn-​
emplacement shearing of a 117.1 ± 1.8 Ma (U-​Pb zircon) tonalite that intrudes 
along the Pollock Mountain thrust on the Whitebird Ridge transect (McKay et 
al., 2017). The ca. 121–​117 Ma exhumation age range of the Pollock Mountain 
thrust sheet overlaps with the ca. 130–​111 Ma timing range of burial of the 
underlying Rapid River thrust sheet, which led McKay et al. (2017) to interpret 
that top-​to-​the-​west emplacement of the Pollock Mountain thrust sheet con-
tributed to the burial of the Rapid River thrust sheet.

2.5. Cretaceous Intrusive Rocks in the Eastern Part of the Suture Zone, 
Rocks of Laurentian Affinity, and the Late Cretaceous Idaho Batholith

On the eastern side of the Salmon River suture zone, exposures are domi-
nated by variably deformed, intermediate to felsic, Cretaceous intrusions and 
orthogneiss, which are interlayered with Permian–​Triassic metavolcanic rocks 
of the Pollock Mountain thrust sheet to the west of the SrI ~0.706 isopleth 
and metasedimentary rocks of interpreted Laurentian affinity to the east of 
the isopleth (Figs. 1B, 2, and 4C) (e.g., Lund, 2004; Gray, 2013b; Blake et al., 
2016). Laurentian-​affinity rocks are preserved as interlayers of garnet- and 
sillimanite-​bearing schist, paragneiss and quartzite, which are interpreted to 
represent metamorphosed Neoproterozoic–​Paleozoic sedimentary rocks of 
the Laurentian passive margin basin (e.g., Lund, 1984; Blake, 1991; Kauffman 
et al., 2014). On the Salmon River transect (Fig. 2), Laurentian-​affinity rocks 
are represented by the Kelly Mountain schist, which is interpreted to correlate 
with the Neoproterozoic Windermere Supergroup (Blake, 1991).

Intrusive rocks on the eastern side of the Salmon River transect include 
tonalitic orthogneiss of likely Cretaceous age to the west of the SrI ~0.706 iso-
pleth (Gray et al., 2020) and ca. 104–​108 Ma and ca. 92 Ma deformed granitic 
plutons to the east of the isopleth (Gray, 2013b; Kauffman et al., 2014; McKay 
et al., 2017) (Fig. 2). To the east of the Whitebird Ridge and Pollock Mountain 
transects, intrusive rocks include the Hazard Creek Complex on the west and 
the Little Goose Creek Complex, which straddles the SrI ~0.706 isopleth, on 
the east (Fig. 1B). U-​Pb zircon crystallization ages from the Little Goose Creek 
and Hazard Creek complexes at the latitude of the Pollock Mountain transect 
range between ca. 123–​104 Ma (Fig. 5B) (Manduca et al., 1993; Giorgis et al., 
2008; Unruh et al., 2008; McKay et al., 2017; Mann, 2018).

Late Cretaceous granitoids of the Idaho batholith lie to the east of our 
studied transects (Fig. 1B). U-​Pb zircon crystallization ages from samples from 
the westernmost part of the batholith range between ca. 93–​85 Ma (Fig. 5) 
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(Giorgis et al., 2008; Gaschnig et al., 2010; McKay et al., 2017; Gray et al., 
2020). Granitoids of the Idaho batholith are interlayered with Laurentian-​affinity 
metasedimentary rocks on the Salmon River transect (Fig. 1B).

2.6. The Western Idaho Shear Zone

Cretaceous intrusive rocks in the eastern part of the Salmon River suture 
zone, along with the Laurentian-​affinity rocks and accreted rocks of the Pol-
lock Mountain thrust sheet into which they intruded, have been deformed 
into metamorphic tectonites with steeply east-​dipping, linear-​planar ductile 
fabrics (Figs. 1B and 2) (Manduca et al., 1993; Giorgis et al., 2008; Blake et 
al. 2009; Gray, 2013b; Gray et al., 2020). These fabrics are attributed to Late 
Cretaceous dextral-​transpressional shearing within the western Idaho shear 
zone, which is a north-​striking, high-​strain zone that accommodated significant 
east-​west shortening (perhaps as much as ~100 km) and northward translation 
of accreted rocks to its west (e.g., McClelland et al., 2000; Tikoff et al., 2001; 
Giorgis et al., 2005, 2008).

Our Whitebird Ridge and Pollock Mountain transects are located ~12–​18 km 
to the west of the western Idaho shear zone, which lies within the Little Goose 
Creek and Hazard Creek complexes at this latitude (Fig. 1B) (Manduca et al., 
1993; Giorgis et al., 2008). However, Blake et al. (2009) interpreted that the 
steeply east-​dipping ductile fabrics in the eastern portion of the Salmon River 
transect, which are observed in all rocks to the east of the Lake Creek antiform 
axis (Figs. 1B and 2), were generated during Late Cretaceous deformation in 
the western Idaho shear zone. Under this interpretation, the Pollock Moun-
tain thrust sheet and the easternmost portion of the Rapid River thrust sheet 
on the Salmon River transect were overprinted by Late Cretaceous dextral-​
transpressional shearing in the western Idaho shear zone (Blake et al., 2009).

There are differing interpretations between previous studies regarding 
the timing of shearing in the western Idaho shear zone. Gray et al. (2020) 
interpreted that the steeply east-​dipping fabrics in the eastern part of the 
Salmon River transect were progressively developed by ductile shearing 
between ca. 115–​86 Ma, and therefore overlapped temporally with the late 
stages of prograde metamorphism and west-​directed emplacement of thrust 
sheets of the Salmon River suture zone to the west. Under this interpretation, 
the dextral-​transpressional shearing on the western Idaho shear zone is the 
youngest component of an accretion-​related progressive deformation event 
in the Salmon River suture zone that spanned from ca. 144 Ma until at least 
ca. 86 Ma. Deformation progressed from an early phase (ca. 144–​105 Ma) 
of margin-​normal shortening within the western portion of the suture zone 
and was followed by a later phase (ca. 115–​86 Ma) dominated by dextral-​
transpressional shearing that overprinted the eastern portion.

Alternatively, dextral-​transpressional shearing in the western Idaho shear 
zone has been interpreted as a younger, temporally distinct event that post-
dated the metamorphism and deformation associated with the collision and 
suturing of island arc terranes to the west (McClelland et al., 2000). Giorgis 

et al. (2008) bracketed shearing in the western Idaho shear zone between ca. 
105–​90 Ma in a region 15–​45 km along-​strike to the south of the Salmon River 
transect. Montz and Kruckenberg (2017) and Braudy et al. (2017), in a region 
120–​160 km along-​strike to the south, bracketed shearing in the western Idaho 
shear zone between ca. 104–​90 Ma and ca. 101–​88 Ma, respectively.

■■ 3. METAMORPHIC CONDITIONS IN THE SALMON RIVER 
SUTURE ZONE

3.1. Summary of Published Thermobarometry

Metamorphic temperatures and pressures attained by rocks in the Rapid 
River and Pollock Mountain thrust sheets have been determined by Selver-
stone et al. (1992) and McKay et al. (2017) (data are summarized on Table 2; 
sample locations are shown on Figs. 1–​3, and temperatures are plotted on 
Fig. 4). Selverstone et al. (1992) utilized the garnet-​biotite thermometer and 
the garnet-​biotite-​plagioclase-​muscovite, quartz-​garnet-​kyanite-​plagioclase, 
and aluminum-​in-​hornblende barometers. McKay et al. (2017) utilized pseudo-
section modeling and the Thermo-​Calc program of Powell and Holland (1994).

Multiple pressure-​temperature determinations from the Rapid River thrust 
sheet were collected on the Salmon River transect. In the western part of 
the thrust sheet, models from McKay et al. (2017) predict initial conditions 
of ~520 °C and ~6 kbar and peak conditions of 600–​675 °C and 7.0–​8.5 kbar 
for sample ID26. In the central part of the thrust sheet, models from McKay 
et al. (2017) predict initial conditions of ~600 °C and 6.3–​6.8 kbar and peak 
conditions of 625–​650 °C and ~8.8 kbar for sample ID07a. Selverstone et al. 
(1992) estimated peak conditions of ~550 °C and ~8 kbar from samples from 
the central part of the thrust sheet (samples 10, 11, 12, 53, 55, and 56) and final 
equilibration of these samples at ~475–​500 °C and ~5–7 kbar, which they inter-
preted to record the conditions of an episode of retrograde metamorphism 
along the exhumation path. In the eastern part of the Rapid River thrust sheet, 
models from McKay et al. (2017) predict initial conditions of 580–​640 °C and 
6.0–​8.3 kbar and peak conditions of 660–​700 °C and 9.5–​10 kbar for sample 
ID48, and Selverstone et al. (1992) estimated peak conditions of 600–​625 °C 
and 8–​11 kbar for sample 18. These samples were collected at 200 m and 
150 m structural distance below the mapped position of the Pollock Mountain 
thrust, respectively.

Pressure-​temperature determinations from the Pollock Mountain thrust 
sheet have been collected along and proximal to the Whitebird Ridge and 
Pollock Mountain transects. On the Whitebird Ridge transect, Selverstone et 
al. (1992) estimated peak conditions of 600–​625 °C and 9–​11 kbar from sample 
305. Seven km to the south of the Whitebird Ridge transect, models of McKay 
et al. (2017) predict initial conditions of 550–​600 °C and 5.3–​5.8 kbar and peak 
conditions of 625–​675 °C and 6.5–​9.3 kbar for sample ID23. On the Pollock 
Mountain transect, models of McKay et al. (2017) predict initial conditions of 
650–​700 °C and 5.5–​7.0 kbar and peak conditions of 650–​750 °C and 7.5–​8.5 kbar 
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for sample ID03b, and Selverstone et al. (1992) estimated a peak temperature 
of 600–​625 °C for sample 422.

3.2. Raman Spectroscopy of Carbonaceous Material Thermometry

The degree of structural organization of graphite bonds within carbona-
ceous material, which originates from the metamorphism of organic matter in 
sedimentary rocks (e.g., Buseck and Huang, 1985), can be used to quantify peak 
metamorphic temperature using the RSCM thermometer (e.g., Beyssac et al., 
2002, 2003; Rahl et al., 2005; Kouketsu et al., 2014; Lünsdorf et al., 2017). We 
utilized the RSCM calibrations of Rahl et al. (2005) and Kouketsu et al. (2014) to 
measure peak metamorphic temperatures attained by 32 metasedimentary rock 
samples from the Salmon River suture zone. Measurements were performed 
at the Eyring Materials Center at Arizona State University (supporting data 
and details on analytical methods are available in the Supplemental Material1).

Examples of representative Raman spectra and photomicrographs of ana-
lyzed grains of carbonaceous material are shown in Figure 6. We followed the 
procedures of Rahl et al. (2005) and Kouketsu et al. (2014), which involved 

1 Supplemental Material. Consists of text that provides details on analytical methods for collection 
of Raman spectroscopy of carbonaceous material (RSCM) thermometry as well as two tables 
of supporting data for RSCM analyses. Please visit https://doi.org/10.1130/GEOS.S.22763711 
to access the supplemental material, and contact editing@geosociety.org with any questions.

fitting as many as five Raman peaks (G, D1, D2, D3, and D4) in the wave-
number range of 1000–​1800 cm−1. Equation 3 of Rahl et al. (2005), which is 
calibrated to their parameters R1 (the height ratio of D1/G) and R2 (the area 
ratio of D1/(G+D1+D2)), was utilized for 28 samples that yielded peak tem-
peratures >400 °C. Equation 1 of Kouketsu et al. (2014), which is calibrated 
to the full width at half maximum of the D1 peak, was utilized for four sam-
ples that yielded peak temperatures <400 °C. Peak temperatures reported 
for our samples (Table 3) represent the mean of multiple analyzed grains of 
carbonaceous material (typically between 13 and 16 grains per sample). Peak 
temperatures are reported at a two standard error level, which accounts for 
internal uncertainty from our measurements and the external uncertainty from 
the calibration equations of Rahl et al. (2005) and Kouketsu et al. (2014) (see 
footnote of Table 3). Error ranges for our samples are typically on the order 
of ± 30–45 °C (Table 3; Fig. 6).

We analyzed 21 samples from the Salmon River transect, consisting of 13 
from the western segment (Fig. 4A), two from the central segment (Fig. 4B), 
and six from the eastern segment (Fig. 4C). Samples ID20-10 and ID20-15 from 
the Heavens Gate thrust sheet yielded temperatures of 357 ± 20 °C and 359 
± 16 °C, respectively. Samples from the structurally imbricated Morrison Ridge 
thrust sheet (Fig. 4A) include four marble samples from the Martin Bridge Lime-
stone (ID20-​88, ID20-​83, SR17A, and ID20-​26), which yielded temperatures that 
increase moving structurally upward (384 ± 15 °C, 416 ± 44 °C, 424 ± 29 °C, and 
498 ± 38 °C), and four phyllite samples from the Lucile Slate (SR18B, ID20-27, 

TABLE 2. COMPILATION OF PUBLISHED THERMOBAROMETRY FROM SALMON RIVER SUTURE ZONE SAMPLES

Source publication Sample Transect Thrust sheet Unit Lithology Structural 
height

(m)

Technique Tinitial

(°C)
Pinitial

(kbar)
Tpeak

(°C)
Ppeak

(kbar)
Tpost-peak

(°C)
Ppost-peak

(kbar)
Peak depth 

range
(km)1

McKay et al. (2017) ID26 Salmon River, western segment Rapid River thrust sheet TrJsc Schist 3900 Thermo-Calc ~520 ~6 600–675 7.0–8.5 — — 28.7 ± 2.8
Selverstone et al. (1992) 56 Salmon River, central segment Rapid River thrust sheet TrJsc Schist 2375 Thermobarometry — — ~550 ~8 ~475–500 ~5–7 29.6 ± 1.9*
Selverstone et al. (1992) 55 Salmon River, central segment Rapid River thrust sheet TrJsc Schist 2200 Thermobarometry — — ~550 — ~475–500 ~5–7 —
Selverstone et al. (1992) 10 Salmon River, central segment Rapid River thrust sheet TrJsc Schist 2125 Thermobarometry — — ~550 — ~475–500 ~5–7 —
McKay et al. (2017) ID07a Salmon River, central segment Rapid River thrust sheet Trbc Amphibolite 2000 Thermo-Calc ~600 6.3–6.8 625-650 ~8.8 — — 32.6 ± 1.9*
Selverstone et al. (1992) 11 Salmon River, central segment Rapid River thrust sheet Trbc Amphibolite 1950 Thermobarometry — — ~550 — ~475–500 ~5–7 —
Selverstone et al. (1992) 53 Salmon River, central segment Rapid River thrust sheet Trbc Amphibolite 1500 Thermobarometry — — ~550 ~8 ~475–500 ~5–7 29.6 ± 1.9*
Selverstone et al. (1992) 12 Salmon River, central segment Rapid River thrust sheet Trlc Amphibolite 1050 Thermobarometry — — ~550 ~8 ~475–500 ~5–7 29.6 ± 1.9*
Selverstone et al. (1992) 18 Salmon River, eastern segment Rapid River thrust sheet** Trbc Amphibolite 1175 Thermobarometry — — 600–625 8–11 — — 35.2 ± 5.6
McKay et al. (2017) ID48 Salmon River, eastern segment Rapid River thrust sheet** Trbc schist 1125 Thermo-Calc 580–640 6.0–8.3 660–700 9.5–10 — — 36.1 ± 0.9
Selverstone et al. (1992) 305 Whitebird Ridge Pollock Mountain thrust sheet Kt Tonalite 2250 Thermobarometry — — 600–625 9–11 — — 37.0 ± 3.7
McKay et al. (2017) ID23 Whitebird Ridge Pollock Mountain thrust sheet PTrp Schist 2225 Thermo-Calc 550–600 5.3–5.8 625–675 6.5–9.3 — — 29.2 ± 5.2
Selverstone et al. (1992) 422 Pollock Mountain Pollock Mountain thrust sheet PTrp Amphibolite 2225 Thermobarometry — — 600–625 — — — -
McKay et al. (2017) ID03b Pollock Mountain Pollock Mountain thrust sheet PTrp Amphibolite 2175 Thermo-Calc 650–700 5.5–7.0 650–750 7.5–8.5 — — 29.6 ± 1.9

1Calculated assuming a lithostatic pressure gradient of 3.7 km/kbar.
Tinitial and Pinitial correspond to the initial, first, or earliest assemblage along the burial path (McKay et al., 2017). Tpeak and Ppeak correspond to the peak assemblage. Tpost-peak and Ppost-peak correspond to the “final equilibration” assemblage 

for samples of the Rapid River thrust sheet (Selverstone et al., 1992).
*The error range for peak depth for these four samples was calculated assuming an approximate Ppeak error value of ±0.5 kbar.
**These two samples lie within the interval of inverted temperatures that we interpret to delineate the boundaries of the Pollock Mountain shear zone (Fig. 8A); see text for discussion.
Notes: Sample locations are shown on Figures 1–3. See Figures 2 and 3 for a guide to unit abbreviations. Em dashes indicate no data.
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Figure 6. (A–​D): Photomicrographs 
(taken in plane-​polarized light) of rep-
resentative examples of analyzed 
grains of carbonaceous material (CM) 
from Salmon River suture zone samples. 
Red circles represent the approximate 
area of the analyzed spots. (E) Examples 
of representative Raman spectra from 
single grain analyses of each sample, or-
ganized in order of increasing structural 
position on each transect. Positions of 
the graphite peak G and defect peaks 
(D1–​D4) are labeled on the bottom 
spectrum in each transect. Peak tem-
peratures (T) for grain analyses >400 °C 
were calculated from Equation 3 of Rahl 
et al. (2005), and T for grain analyses 
≤400 °C were calculated from Equation 
1 of Kouketsu et al. (2014). Single grain 
analyses are listed with the external 
uncertainty of their corresponding 
calibration equation (±50 °C for Rahl 
et al., 2005, Equation 3, and ±30 °C for 
Kouketsu et al., 2014, Equation 1). R1 
and R2 parameters are calculated after 
Rahl et al. (2005). FWHM—full width at 
half-​maximum.
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TABLE 3. SUMMARY OF RAMAN SPECTROSCOPY OF CARBONACEOUS MATERIAL (RSCM) THERMOMETRY RESULTS FOR SALMON RIVER SUTURE ZONE SAMPLES

Sample Latitude Longitude Transect Thrust sheet Map  
unit

Lithology Structural 
height  

(m)

Temperature  
calibration

D1 FWHM R1 R2 Peak temperature 
(˚C)

n

Mean 1σ Mean 1σ Mean 1σ Mean 1σ 2 SE

ID21-3B 45.41297 116.31944 Salmon River, western segment Rapid River thrust sheet TrJsc schist 4500 Rahl et al. (2005) eq. 3 — — 0.146 0.074 0.223 0.084 544 69 44 15
SR19 45.40772 116.34134 Salmon River, western segment Rapid River thrust sheet TrJsc schist 3725 Rahl et al. (2005) eq. 3 — — 0.129 0.059 0.190 0.060 574 46 36 14
ID20-29A 45.37069 116.37044 Salmon River, western segment Rapid River thrust sheet Trlc schist 2925 Rahl et al. (2005) eq. 3 — — 0.069 0.037 0.149 0.070 600 64 45 13
ID20-80A 45.35519 116.39300 Salmon River, western segment Morrison Ridge thrust sheet Trl phyllite 1900 Rahl et al. (2005) eq. 3 — — 0.100 0.044 0.154 0.060 604 54 36 17
ID20-81 45.35492 116.39403 Salmon River, western segment Morrison Ridge thrust sheet Trl phyllite 1875 Rahl et al. (2005) eq. 3 — — 0.196 0.074 0.243 0.062 537 45 32 18
ID20-27 45.39830 116.41042 Salmon River, western segment Morrison Ridge thrust sheet Trl phyllite 1850 Rahl et al. (2005) eq. 3 — — 0.426 0.150 0.403 0.071 427 48 33 18
SR18B 45.39048 116.42145 Salmon River, western segment Morrison Ridge thrust sheet Trl phyllite 1800 Rahl et al. (2005) eq. 3 — — 0.587 0.088 0.459 0.045 407 31 30 16
ID20-26 45.39442 116.41633 Salmon River, western segment Morrison Ridge thrust sheet Trmb marble 1650 Rahl et al. (2005) eq. 3 — — 0.222 0.030 0.288 0.036 498 32 38 10
SR17A 45.38607 116.44364 Salmon River, western segment Morrison Ridge thrust sheet Trmb marble 1525 Rahl et al. (2005) eq. 3 — — 0.594 0.139 0.445 0.051 424 26 29 15
ID20-83 45.34861 116.40292 Salmon River, western segment Morrison Ridge thrust sheet Trmb marble 1475 Rahl et al. (2005) eq. 3 — — 0.431 0.073 0.416 0.051 416 42 44 9
ID20-88 45.34761 116.40453 Salmon River, western segment Morrison Ridge thrust sheet Trmb marble 1450 Kouketsu et al. (2014) eq. 1 43.6 2.1 — — — — 384 5 15 16
ID20-15 45.35972 116.49297 Salmon River, western segment Heavens Gate thrust sheet Trws phyllite 1100 Kouketsu et al. (2014) eq. 1 55.2 4.7 — — — — 359 10 16 15
ID20-10 45.36381 116.49794 Salmon River, western segment Heavens Gate thrust sheet Trws marble 1075 Kouketsu et al. (2014) eq. 1 56.1 12.8 — — — — 357 28 20 17

ID21-4A 45.42183 116.28649 Salmon River, central segment Rapid River thrust sheet TrJsc schist 3175 Rahl et al. (2005) eq. 3 — — 0.097 0.03 0.165 0.042 591 37 33 14
ID21-5A 45.41872 116.26678 Salmon River, central segment Rapid River thrust sheet TrJsc schist 2250 Rahl et al. (2005) eq. 3 — — 0.092 0.06 0.147 0.077 609 64 41 16

SR2E 45.40183 116.10384 Salmon River, eastern segment Laurentian metasedimentary rocks Zkm paragneiss 7900 Rahl et al. (2005) eq. 3 — — 0.151 0.036 0.246 0.043 522 39 32 16
ID20-64 45.41131 116.18881 Salmon River, eastern segment Pollock Mountain thrust sheet PTrp schist 1375 Rahl et al. (2005) eq. 3 — — 0.050 0.056 0.086 0.074 661 62 44 13
ID20-63B 45.40886 116.19119 Salmon River, eastern segment Rapid River thrust sheet Trbc schist 1250 Rahl et al. (2005) eq. 3 — — 0.027 0.024 0.061 0.052 681 49 33 18
SR24 45.40251 116.20014 Salmon River, eastern segment Rapid River thrust sheet Trlc schist 875 Rahl et al. (2005) eq. 3 — — 0.144 0.017 0.221 0.026 546 24 32 12
ID20-62B 45.40172 116.20247 Salmon River, eastern segment Rapid River thrust sheet Trlc schist 750 Rahl et al. (2005) eq. 3 — — 0.102 0.021 0.162 0.030 597 26 27 18
ID20-61A 45.39981 116.20906 Salmon River, eastern segment Rapid River thrust sheet Pfc schist 500 Rahl et al. (2005) eq. 3 — — 0.109 0.023 0.167 0.031 593 27 28 16

ID21-11 45.29034 116.36716 Whitebird Ridge Pollock Mountain thrust sheet PTrp schist 2275 Rahl et al. (2005) eq. 3 — — 0.033 0.013 0.077 0.025 666 22 33 11
ID21-12 45.29836 116.38136 Whitebird Ridge Pollock Mountain thrust sheet PTrp schist 2175 Rahl et al. (2005) eq. 3 — — 0.043 0.024 0.075 0.037 671 32 33 13
ID21-10 45.28899 116.36334 Whitebird Ridge Rapid River thrust sheet TrJsc schist 2125 Rahl et al. (2005) eq. 3 — — 0.036 0.029 0.08 0.049 663 44 40 11
ID21-13 45.29973 116.38188 Whitebird Ridge Rapid River thrust sheet TrJsc schist 2100 Rahl et al. (2005) eq. 3 — — 0.118 0.056 0.186 0.069 575 58 48 10
ID21-15 45.29932 116.40415 Whitebird Ridge Rapid River thrust sheet TrJsc phyllite 2100 Rahl et al. (2005) eq. 3 — — 0.152 0.067 0.215 0.066 555 53 46 10
ID21-17 45.29456 116.41005 Whitebird Ridge Rapid River thrust sheet TrJsc schist 1925 Rahl et al. (2005) eq. 3 — — 0.132 0.07 0.18 0.079 585 64 41 16

ID20-36B 45.15669 116.46689 Pollock Mountain Rapid River thrust sheet Pfc schist 925 Rahl et al. (2005) eq. 3 — — 0.222 0.029 0.252 0.022 536 18 34 10
ID20-37A 45.15769 116.47025 Pollock Mountain Morrison Ridge thrust sheet Trl phyllite 825 Rahl et al. (2005) eq. 3 — — 0.135 0.050 0.177 0.058 590 49 33 18
ID21-18 45.20474 116.44778 Pollock Mountain Morrison Ridge thrust sheet Trl phyllite 700 Rahl et al. (2005) eq. 3 — — 0.198 0.08 0.251 0.068 529 51 37 15
ID21-19 45.20869 116.44760 Pollock Mountain Morrison Ridge thrust sheet Trmb marble 625 Rahl et al. (2005) eq. 3 — — 0.294 0.084 0.296 0.062 509 44 39 12
ID20-39 45.16046 116.47629 Pollock Mountain Morrison Ridge thrust sheet Trmb marble 575 Kouketsu et al. (2014) eq. 1 49.0 2.1 — — — — 373 4 17 13

Notes: See Figures 2 and 3 for a guide to unit abbreviations. Peak temperatures >400 °C were determined using equation 3 of Rahl et al. (2005) and peak temperatures between 200–400 °C were determined using equation 1 of 
Kouketsu et al. (2014). R1 and R2 parameters were calculated using equations 1 and 2 of Rahl et al. (2005), and D1 FWHM (full width at half maximum) values were calculated using procedures described in Kouketsu et al. (2014). 
Internal variability in R1, R2, D1 FWHM, and peak temperature is indicated by 1σ uncertainty. Peak temperatures are also reported at a 2 standard error (SE) level, calculated from quadratic addition of 1σ internal error and external 
error of ±50 ˚C from the Rahl et al. (2005) calibration or ±30 ˚C from the Kouketsu et al. (2014) equation 1 calibration, divided by the square root of the number of analyzed grains of carbonaceous material (n). Em dashes indicate 
no data.
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ID20-81, and ID20-80), which also yielded temperatures that increase moving 
structurally upward (407 ± 30 °C, 427 ± 33 °C, 537 ± 32 °C, and 604 ± 36 °C). 
Five samples from the western and central portions of the Rapid River thrust 
sheet (ID20-​29A, SR19, ID21-3B, ID21-5A, and ID21-4A) yielded temperatures of 
600 ± 45 °C, 574 ± 36 °C, 544 ± 44 °C, 609 ± 41 °C, and 591 ± 33 °C, respectively 
(Figs. 4A and 4B). Four samples that are distributed across the uppermost 800 m 
of the Rapid River thrust sheet (ID20-61A, ID20-62B, SR24, and ID20-63B) yielded 
temperatures of 593 ± 28 °C, 597 ± 27 °C, 546 ± 32 °C, and 681 ± 33 °C, respec-
tively (Fig. 4C). Sample ID20-64, which lies 50 m above the Pollock Mountain 
thrust, yielded 661 ± 44 °C. Sample SR2E, a schist of Laurentian affinity to the 
east of the SrI ~0.706 isopleth, yielded 522 ± 32 °C.

We analyzed six samples from the Whitebird Ridge transect (Fig. 4D), includ-
ing four samples that are distributed across the uppermost 225 m of the Rapid 
River thrust sheet (ID21-​17, ID21-​15, ID21-​13, and ID21-​10), which yielded tem-
peratures of 585 ± 41 °C, 555 ± 46 °C, 575 ± 48 °C, and 663 ± 40 °C, and two 
samples from the basal 125 m of the Pollock Mountain thrust sheet (ID21-​12: 
671 ± 33 °C and ID21-​11: 666 ± 33 °C). We analyzed five samples from the Pollock 
Mountain transect (Fig. 4E), consisting of four samples from the 0.4-​km-​thick 
Morrison Ridge thrust sheet (ID20-​39, ID21-​19, ID21-​18, and ID20-​37A), which 
yielded 373 ± 17 °C, 509 ± 39 °C, 529 ± 37 °C, and 590 ± 33 °C, and one sample 
from the Rapid River thrust sheet (ID20-​36B: 536 ± 34 °C).

3.3. Approximate Deformation Temperatures from Quartz 
Recrystallization Microstructures

Assuming an invariant strain rate and constant water content during defor-
mation, the dominant mechanism of dynamic recrystallization of quartz, which 
can be interpreted from visual analysis of recrystallized quartz in thin sections, 
can allow estimating approximate ranges of deformation temperature (e.g., 
Law, 2014). We observed microstructures characteristic of dynamic recrystalli-
zation of quartz in 47 thin sections from the Salmon River suture zone (Table 4). 
Three quartz recrystallization microstructures were observed: (1) ≤0.025-​mm-​
diameter bulges or subgrains localized at the boundaries of detrital quartz 
clasts (Fig. 7A), which are indicative of bulging recrystallization (e.g., Bailey 
and Hirsch, 1962; Drury et al., 1985); (2) equigranular textures dominated by 
0.05–​0.1-​mm-​diameter quartz porphyroclasts (Figs. 7B–​7F), which are indic-
ative of subgrain rotation recrystallization (e.g., Poirier and Nicolas, 1975; 
White, 1977; Stipp et al., 2002); and (3) “amoeboid” quartz porphyroclasts up 
to 1–2 mm in diameter (Figs. 7G–​7J), which are indicative of grain boundary 
migration recrystallization (e.g., Guillope and Poirier, 1979; Urai et al., 1986; 
Stipp et al., 2002). Our results are plotted on Figure 4, utilizing deformation 
temperatures that represent the full combined ranges measured by Stipp et 
al. (2002) for the Tonale fault zone in Italy and by Law (2014) for the Himalayan 
fold-​thrust belt (~280–​450 °C for bulging, ~400–​550 °C for subgrain rotation, and 
~500–​700 °C for grain boundary migration). We interpret these deformation 
temperature ranges as approximate (e.g., Law, 2014), and we show them for 

qualitative comparison with our RSCM data and the thermobarometry data 
of Selverstone et al. (1992) and McKay et al. (2017).

Our quartz recrystallization observations define a pattern of increasing 
deformation temperature moving structurally upward and eastward through 
the suture zone. Bulging was observed in the basal part of the Heavens Gate 
thrust sheet (Fig. 4A). Subgrain rotation was observed in the uppermost 50 m 
of the Heavens Gate thrust sheet, distributed through the Morrison Ridge thrust 
sheet, and distributed through much of the Rapid River thrust sheet (Fig. 4). 
On the Salmon River transect, subgrain rotation transitions upward to grain 
boundary migration between 825 m and 575 m structural distance below the 
Pollock Mountain thrust, and grain boundary migration is dominant in all rocks 
to the east (Fig. 4C). On the Whitebird Ridge transect, the upward transition 
from subgrain rotation to grain boundary migration is between 25 m structur-
ally below and 25 m structurally above the Pollock Mountain thrust (Fig. 4D). On 
the Pollock Mountain transect, grain boundary migration becomes dominant 
at 225–​175 m structural distance below the Pollock Mountain thrust (Fig. 4E).

3.4. Integration and Summary of Metamorphic Temperature Data

To quantify peak temperature trends as a function of structural position, 
we combined all temperature data from the Salmon River transect onto one 
tectonostratigraphic column (Fig. 8A) and all temperature data from the White-
bird Ridge and Pollock Mountain transects onto another column (Fig. 8B). On 
both columns, the data illustrate a similar pattern of approximately isother-
mal conditions (i.e., no temperature trend with structural position) within 
individual ductile thrust sheets, which are separated by intervals of inverted 
temperatures (i.e., inverted thermal gradients) that are centered around the 
mapped positions of thrust faults.

On the Salmon River transect (Fig. 8A), rocks in the Heavens Gate thrust 
sheet yielded a mean peak temperature of 358 ± 18 °C (n = 2) (mean peak 
temperatures are reported with the mean error value of all individual sam-
ples, and thermal gradients were calculated using a linear regression and are 
reported with a 2σ error). Temperatures from six samples collected within the 
Morrison Ridge thrust sheet yielded a mean peak temperature of 426 ± 32 °C. 
Temperatures from two samples collected within a thin, overlying thrust sheet 
in the footwall of the Rapid River thrust increase upward from 537 ± 32 °C to 
604 ± 36 °C; this increase defines a steep inverted thermal gradient of 1999 
± 616 °C/km. Sixteen samples distributed across the basal 3.1 km of the Rapid 
River thrust sheet yielded approximately isothermal temperatures, with a 
mean of 577 ± 30 °C. Structurally above this, between 450 m below and 50 m 
above the Pollock Mountain thrust, temperatures from six samples increase 
upward from 546 ± 32 °C to 681 ± 33 °C and are best-​fit by an inverted thermal 
gradient of 242 ± 89 °C/km.

On the combined Whitebird Ridge/Pollock Mountain transect (Fig. 8B), tem-
peratures from four samples that span the upper 275 m of the Morrison Ridge 
thrust sheet increase upward from 373 ± 17 °C to 590 ± 33 °C. When combined 
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TABLE 4. SUMMARY OF QUARTZ RECRYSTALLIZATION MECHANISM OBSERVATIONS FROM SALMON RIVER SUTURE ZONE THIN SECTIONS

Sample Latitude Longitude Transect Thrust sheet Map unit Lithology Structural 
height

(m)

Quartz recrystallization 
mechanism

ID21-3B 45.41297 116.31944 Salmon River, western segment Rapid River thrust sheet TrJsc Schist 4500 Subgrain rotation
SR19 45.40772 116.34134 Salmon River, western segment Rapid River thrust sheet TrJsc Schist 3725 Subgrain rotation
ID20-29A 45.37069 116.37044 Salmon River, western segment Rapid River thrust sheet Trlc Schist 2925 Subgrain rotation
ID20-79 45.36561 116.38075 Salmon River, western segment Rapid River thrust sheet Trlc Schist 2450 Subgrain rotation
ID21-1 45.35519 116.39300 Salmon River, western segment Morrison Ridge thrust sheet Trl Phyllite 1900 Subgrain rotation
ID20-80A 45.35519 116.39300 Salmon River, western segment Morrison Ridge thrust sheet Trl Phyllite 1900 Subgrain rotation
ID20-80B 45.35519 116.39300 Salmon River, western segment Morrison Ridge thrust sheet Trl Quartzite 1900 Subgrain rotation
ID20-81 45.35492 116.39403 Salmon River, western segment Morrison Ridge thrust sheet Trl Phyllite 1875 Subgrain rotation
ID20-27 45.39830 116.41042 Salmon River, western segment Morrison Ridge thrust sheet Trl Slate 1850 Subgrain rotation
ID20-20A 45.39094 116.45378 Salmon River, western segment Heavens Gate thrust sheet Trws Phyllite 1400 Subgrain rotation
ID20-86 45.33569 116.40642 Salmon River, western segment Heavens Gate thrust sheet Trws Volcaniclastic sandstone 1375 Subgrain rotation
SR15 45.34912 116.50961 Salmon River, western segment Heavens Gate thrust sheet Trws Argillite 300 Bulging

ID21-4A 45.42183 116.28649 Salmon River, central segment Rapid River thrust sheet TrJsc Schist 3175 Subgrain rotation
ID21-5A 45.41872 116.26678 Salmon River, central segment Rapid River thrust sheet TrJsc Schist 2250 Subgrain rotation
ID20-5 45.41242 116.25281 Salmon River, central segment Rapid River thrust sheet Trbc Amphibolite 2025 Subgrain rotation
SR12C 45.39951 116.21679 Salmon River, central segment Rapid River thrust sheet Trlc Schist 775 Subgrain rotation

SR2E 45.40183 116.10384 Salmon River, eastern segment Laurentian metasedimentary rocks Zkm Paragneiss 7900 Grain boundary migration
ID21-24 45.40092 116.11378 Salmon River, eastern segment Laurentian metasedimentary rocks Zkm Schist 7150 Grain boundary migration
ID20-71B 45.42651 116.13518 Salmon River, eastern segment Laurentian metasedimentary rocks Zkm Quartzite 5100 Grain boundary migration
SR5A 45.42680 116.13590 Salmon River, eastern segment Intrusive rocks PKv Orthogneiss 5000 Grain boundary migration
SR5B 45.42680 116.13590 Salmon River, eastern segment Intrusive rocks PKv Orthogneiss 5000 Grain boundary migration
SR21 45.41667 116.16844 Salmon River, eastern segment Pollock Mountain thrust sheet Trk Schist 2775 Grain boundary migration
SR8C 45.41873 116.17146 Salmon River, eastern segment Pollock Mountain thrust sheet Trk Orthogneiss 2425 Grain boundary migration
ID20-67B 45.41883 116.17164 Salmon River, eastern segment Pollock Mountain thrust sheet Trk Orthogneiss 2375 Grain boundary migration
ID20-65 45.41244 116.18719 Salmon River, eastern segment Pollock Mountain thrust sheet PTrp Orthogneiss 1550 Grain boundary migration
ID20-64 45.41131 116.18881 Salmon River, eastern segment Pollock Mountain thrust sheet PTrp Schist 1375 Grain boundary migration
ID20-63B 45.40886 116.19119 Salmon River, eastern segment Rapid River thrust sheet Trbc Schist 1250 Grain boundary migration
SR10E 45.40260 116.19970 Salmon River, eastern segment Rapid River thrust sheet Trlc Schist 900 Grain boundary migration
SR24 45.40251 116.20014 Salmon River, eastern segment Rapid River thrust sheet Trlc Schist 875 Grain boundary migration
ID20-62B 45.40172 116.20247 Salmon River, eastern segment Rapid River thrust sheet Trlc Schist 750 Grain boundary migration
ID20-61B 45.39981 116.20906 Salmon River, eastern segment Rapid River thrust sheet Pfc Quartzite 500 Subgrain rotation

ID21-12 45.29836 116.38136 Whitebird Ridge Pollock Mountain thrust sheet PTrp Schist 2175 Grain boundary migration
ID21-10 45.28899 116.36334 Whitebird Ridge Rapid River thrust sheet TrJsc Schist 2125 Subgrain rotation
ID21-13 45.29973 116.38188 Whitebird Ridge Rapid River thrust sheet TrJsc Schist 2100 Subgrain rotation
ID21-14 45.31306 116.39399 Whitebird Ridge Rapid River thrust sheet TrJsc Calcareous schist 2100 Subgrain rotation
ID21-15 45.29932 116.40415 Whitebird Ridge Rapid River thrust sheet TrJsc Phyllite 2100 Subgrain rotation
ID21-17 45.29456 116.41005 Whitebird Ridge Rapid River thrust sheet TrJsc Schist 1925 Subgrain rotation

ID20-32C 45.20114 116.40847 Pollock Mountain Pollock Mountain thrust sheet Trdg Orthogneiss 1600 Grain boundary migration
ID21-20 45.20780 116.43665 Pollock Mountain Rapid River thrust sheet TrJsc Schist 1150 Subgrain rotation
ID20-53 45.15642 116.46131 Pollock Mountain Rapid River thrust sheet Pfc Schist 1075 Grain boundary migration
ID20-35 45.15778 116.46406 Pollock Mountain Rapid River thrust sheet Pfc Amphibolite 1000 Subgrain rotation
ID20-56 45.15619 116.46558 Pollock Mountain Rapid River thrust sheet Pfc Amphibolite 950 Grain boundary migration
ID20-36A 45.15669 116.46689 Pollock Mountain Rapid River thrust sheet Pfc Schist 925 Subgrain rotation
ID20-36B 45.15669 116.46689 Pollock Mountain Rapid River thrust sheet Pfc Schist 925 Subgrain rotation
ID20-37A 45.15769 116.47025 Pollock Mountain Morrison Ridge thrust sheet Trl Phyllite 825 Subgrain rotation
ID21-18 45.20474 116.44778 Pollock Mountain Morrison Ridge thrust sheet Trl Phyllite 700 Subgrain rotation
ID21-19 45.20869 116.4476 Pollock Mountain Morrison Ridge thrust sheet Trmb Marble 625 Subgrain rotation

Notes: See Figures 2 and 3 for a guide to unit abbreviations.
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B) Subgrain rotation: ID20-20A, Trws, Heavens
Gate thrust sheet

C) Subgrain rotation: ID20-27, Trl, Morrison
Ridge thrust sheet

1 mm

0.5 mm

0.25 mm

1 mm

1 mm1 mm

0.5 mm

0.5 mm

D) Subgrain rotation: ID20-80A, Trl, Morrison
Ridge thrust sheet

E) Subgrain rotation: ID20-35, Pfc, Rapid River
thrust sheet

G) Grain boundary migration: ID20-56, Pfc,
Rapid River thrust sheet

H) Grain boundary migration: ID20-62B, Trlc,
Rapid River thrust sheet

I) Grain boundary migration: ID20-67B, Trk,
Pollock Mountain thrust sheet

J) Grain boundary migration: SR2E, Zkm,
Laurentian-affinity metasedimentary rocks

F) Subgrain rotation: ID21-14, TrJsc, Rapid
River thrust sheet

0.25 mm

A) Bulging: SR15, Trws, Heavens Gate thrust
sheet

0.125 mm

Figure 7. Photomicrographs (taken in 
cross-​polarized light) of representative 
quartz recrystallization microstruc-
tures in thin sections from the Salmon 
River suture zone, organized from 
structurally low (A) to high (J). See 
Figures 2 and 3 for a guide to rock unit 
abbreviations. (A) Bulges and subgrains 
(≤0.025-​mm-​diameter) localized along 
the boundaries of adjacent detrital 
quartz clasts, characteristic of bulging 
recrystallization. (B–​F) Equigranular tex-
ture of ~0.05–​0.1-​mm-​diameter quartz 
porphyroclasts, characteristic of sub-
grain rotation recrystallization. (G–​J) 
Interfingering “amoeboid” quartz por-
phyroclasts up to ~1–2 mm in diameter, 
characteristic of grain boundary migra-
tion recrystallization.
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Peak temperature range from thermobarometry (McKay et al., 2017)
Peak temperature range from thermobarometry (Selverstone et al., 1992)

Deformation temperature range from quartz recrystallization mechanism
(280-450 °C = bulging, 400-550 °C = subgrain rotation, 500-700 °C = 
grain boundary migration)
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MRT
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High-strain zone
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Mean peak temperature for individual thrust sheets

M
RT

sh
ee

t

ID20-10

ID20-88
ID20-83
SR17A
ID20-26
SR18B

ID26

10
ID07a
11

55

56

53

12

ID20-61A

ID48
18

305

422
ID03b

ID20-39

ID20-15

SR19

ID20-29A

ID20-80A
ID20-81
ID20-27

ID20-64
ID20-63B

SR24
ID20-62B

ID20-37A
ID20-36B

ID23

ID21-18
ID21-19

ID21-17
ID21-13,15
ID21-10
ID21-12

ID21-11

ID21-3B

ID21-4A

ID21-5A

Figure 8. Tectonostratigraphic columns 
of: (A) the combined Salmon River tran-
sect, which includes temperature data 
from the western, central, and eastern 
segments (an approximate error of 
±25 °C was used for the six temperature 
samples of Selverstone et al., 1992, from 
the Rapid River thrust sheet); and (B) the 
combined Whitebird Ridge and Pollock 
Mountain transects, which include all 
temperature data collected from both 
transects. Temperature data are graphed 
versus structural thickness to the right 
of each column and include our Raman 
spectroscopy of carbonaceous material 
(RSCM) temperatures, published ther-
mobarometry from Selverstone et al. 
(1992) and McKay et al. (2017), and gen-
eral deformation temperature patterns 
defined by our quartz recrystallization 
observations. Interpretations of the spa-
tial extent of the Pollock Mountain shear 
zone (graphs A and B), a high-​strain 
zone within the footwall of the Rapid 
River thrust (graph A), and a possible 
intraformational thrust or high-​strain 
zone (graph B) within the Morrison 
Ridge thrust sheet are shown. Abbre-
viations: HGT—Heavens Gate thrust; 
MRT—Morrison Ridge thrust; PMT—
Pollock Mountain thrust; RRT—Rapid 
River thrust.

Downloaded from http://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/19/4/1103/5934302/ges02621.1.pdf
by guest
on 24 August 2023

http://geosphere.gsapubs.org


1121Long et al.  |  Thermal architecture of the Salmon River suture zoneGEOSPHERE  |  Volume 19  |  Number 4

Research Paper

with sample ID20-​36B (75 m above the Rapid River thrust), these five samples 
are best-​fit by an inverted thermal gradient of 403 ± 226 °C/km. In the Rapid 
River thrust sheet, temperatures between 75 m above the Rapid River thrust 
and 50 m below the Pollock Mountain thrust are approximately isothermal, 
with a mean temperature of 563 ± 42 °C (n = 4). Between 50 m below and 
25 m above the Pollock Mountain thrust, four samples are best-​fit by a steep 
inverted thermal gradient of 1413 ± 648 °C/km. Between 25 m and 1150 m above 
the Pollock Mountain thrust, temperatures from six samples do not exhibit a 
trend with structural position and yielded a mean temperature of 652 ± 28 °C.

■■ 4. DISCUSSION

The data summarized above define a pattern of approximately isothermal 
conditions within individual ~1–​3-km-​thick, penetratively deformed thrust 
sheets in the western portion of the Salmon River suture zone, which are 
separated by ~100–​500-m-​thick inverted thermal gradients that surround the 
mapped positions of thrust faults. We interpret that this portion of the suture 
zone represents a ductile accretionary complex, which evolved via in-​sequence 
accretion and top-​to-​the-​west translation of ductile thrust sheets that were 
deformed at progressively lower temperatures and depths with time (e.g., 
Pavlis, 1986; Dunlap et al., 1997). When viewed in the context of the thermal 
regime of folded isotherms produced during arc-​continent collision (Fig. 9A) 
(e.g., Vogt et al., 2012; Vogt and Gerya, 2014; Dymkova et al., 2016; Yang et 
al., 2018), this “ductile accretionary complex” interpretation for the Salmon 
River suture zone can explain several first-​order aspects of its thermal and 
structural architecture, including: (1) the genesis of inverted thermal gradi-
ents that are localized across the mapped positions of thrust faults, (2) the 
approximately isothermal conditions distributed within individual ductile thrust 
sheets, (3) the stepwise decrease in the mean peak temperatures of ductile 
thrust sheets moving structurally downward and westward, and (4) the pub-
lished metamorphic and exhumation histories of the Pollock Mountain and 
Rapid River thrust sheets.

This discussion is supported by Figure 9, a series of schematic cross sec-
tions that illustrate increments of the structural evolution of the Salmon River 
suture zone. On Figure 9, we interpret the construction of the ductile accre-
tionary complex in the western part of the Salmon River suture zone as the 
consequence of east-​directed, A-​type (i.e., Alpine- or Ampferer-​type; Bally, 
1975) subduction of the eastern portion of the Wallowa island arc terrane 
during its accretion with North America. This interpretation is supported by 
receiver function imaging ~120 km to the south, which defines a shallowly 
east-​dipping, mid-​crustal reflector to the east of the western Idaho shear zone. 
This reflector is interpreted to represent the shear zone along which accreted 
terranes of the Blue Mountains Province were partially subducted eastward 
beneath North American crust (Stanciu et al., 2016).

Steady-​state isotherms from a thermal model of collisional orogenesis from 
Henry et al. (1997) are shown on Figures 9A and 9B. The folding of isotherms 

at and below the subduction interface, which becomes more pronounced at 
greater depths, is an inherent feature of thermal-​mechanical models of colli-
sional orogenic systems (e.g., Henry et al., 1997; Huerta et al., 1998; Herman 
et al., 2010; Jamieson and Beaumont, 2013; Vogt et al., 2012; Vogt and Gerya, 
2014; Dymkova et al., 2016; Yang et al., 2018). At mid-​crustal depths (starting 
at ~15 km on Figs. 9A and 9B), low to near-​isothermal gradients are predicted 
beneath the subduction interface, which can explain the isothermal peak tem-
peratures distributed within ductile thrust sheets of the Salmon River suture 
zone. Within this mid-​crustal thermal regime, top-​to-​the-​west displacement 
that juxtaposed hanging wall rocks that record higher peak temperatures 
over footwall rocks that record lower peak temperatures can explain the ori-
gin of inverted thermal gradients across thrust faults (e.g., Corrie and Kohn, 
2011; Long et al., 2016). Accordingly, we interpret that the spatial limits of the 
inverted thermal gradients that we document in the Salmon River suture zone 
likely define high-​strain zones of ductile shearing in which the majority of dif-
ferential top-​to-​the-​west displacement was localized (e.g., Long et al., 2016; 
Grujic et al., 2020). Therefore, although all structural levels of the thrust sheets 
in the suture zone were penetratively sheared during their burial, accretion, 
and translation, with thrust-​subparallel linear-​planar fabrics likely indicating 
a component of transport-​parallel stretching (e.g., Means, 1989), we interpret 
that the majority of top-​to-​the-​west translation was accommodated within 
relatively narrow (~100–​500-m-​thick) high-​strain zones of ductile, thrust-​sense 
shearing. Additionally, we acknowledge that shear heating (e.g., Pavlis, 1986; 
Molnar and England, 1990) likely also played a role in the attainment of the 
peak temperatures that we document in the ductile thrust sheets of the suture 
zone, as penetrative ductile fabrics are observed at all structural levels.

The earliest event in the Salmon River suture zone that is attributed to 
accretion of the Wallowa terrane was the ca. 144–​123 Ma prograde metamor-
phism of rocks that presently comprise the Pollock Mountain thrust sheet 
(Figs. 9A and 9B) (Getty et al., 1993; McKay et al., 2017). These rocks were 
buried to peak depths of ~29–​37 km (assuming a lithostatic pressure gradient 
of 3.7 km/kbar; Table 2) and a mean peak temperature of 652 ± 28 °C (Fig. 8B) 
prior to their accretion and translation above the Pollock Mountain thrust, 
which is interpreted to have initiated between ca. 121–​117 Ma based on the 
timing of exhumation-​related cooling through ~500 °C (Fig. 9C) (Lund and Snee, 
1988; Snee et al., 1995; McKay et al., 2017). Ductile fabrics and top-​to-​the-​west 
shear-​sense indicators are spatially distributed in both the hanging wall and 
footwall of the mapped position of the Pollock Mountain thrust (e.g., Blake, 
1991; Blake et al., 2009; McKay et al., 2017; Gray et al., 2020), and pressure-​
temperature-​time data indicate that displacement on this structure juxtaposed 
rocks in its hanging wall and footwall at mid-​crustal depths (Selverstone et al., 
1992). Therefore, we find it more appropriate to view the Pollock Mountain 
“thrust” as a thrust-​sense ductile shear zone. On the Salmon River transect, 
we document an inverted thermal gradient that spans between 450 m below 
and 50 m above the mapped position of the Pollock Mountain thrust (Fig. 8A), 
and on the Whitebird Ridge/Pollock Mountain transects, the inverted thermal 
gradient spans from 50 m below to 25 m above the mapped position of the 
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Figure 9. Schematic cross-​section 
diagrams depicting the structural 
evolution of the Salmon River su-
ture zone (SRSZ). See text Sections 
2 and 4 for discussion of published 
timing constraints. (A) Initial under-
thrusting (i.e., A-​type subduction of 
Bally, 1975) of the eastern portion 
of the Wallowa terrane. The rela-
tive positions of rocks within four 
future ductile thrust sheets are 
shown (PMTS—Pollock Mountain 
thrust sheet; RRTS—Rapid River 
thrust sheet; MRTS—Morrison 
Ridge thrust sheet; HGTS—Heav-
ens Gate thrust sheet) and are 
plotted based on the mean peak 
temperatures that they will eventu-
ally attain. Mean peak temperatures 
(dots) and error ranges (thick lines 
extending from dots) for individ-
ual thrust sheets from Figure 8 are 
plotted. Steady-​state isotherms are 
from Model 1 of Henry et al. (1997; 
their fig. 5). The 26 km crustal thick-
ness shown for the Wallowa terrane 
is from Tetreault and Buiter (2014). 
The 10° eastward-​dipping initial 
subduction angle that is shown 
is consistent with a shallowly 
east-​dipping, mid-​crustal reflector 
~120 km to the south that is inter-
preted as the subduction interface 
between Blue Mountains Province 
terranes and North American crust 
(Stanciu et al., 2016). In order to ac-
count for the published constraints 
on the burial depths of ductile 
thrust sheets, Laurentian-​affinity 
rocks are shown overlying the su-
ture zone accretionary complex 
on the west. (B) Enlarged portion 
of cross section A. (C) Geometry 
after displacement on the Pollock 
Mountain thrust (PMT). For cross 
sections C–E, the temperature error 
ranges for the ductile thrust sheets 
are no longer shown for simplicity, 
and schematic isotherms represent 
the peak temperature conditions 
recorded at any given structural 
level, which locally may have been 
attained prior to the time increment 
shown in each cross section. (D) Ge-
ometry after displacement on the 
Rapid River thrust (RRT). Note the 
change in west-​to-​east position 
and depth relative to cross section 
C. (E) Geometry after displace-
ment on the Morrison Ridge thrust 
(MRT) and Heavens Gate thrust 
(HGT). (F) Geometry after ca. 105–​
90 Ma (timing range from Giorgis 
et al., 2008) dextral-​transpressional 
shearing in the western Idaho shear 
zone (WISZ), which overprinted the 
eastern portion of the SRSZ and 
generated steeply east-​dipping 
ductile fabrics. Late-​stage duplex-
ing is hypothesized at depth, as a 
mechanism to construct the long-​
wavelength folds observed on the 
Salmon River transect (the Riggins 
synform and Lake Creek antiform). The approximate paleodepth of the modern exposure level is shown. The 25° final eastward dip that is shown for ductile thrust sheets 
in the western part of the suture zone is supported by the modern ~20°–30° range of eastward dips for the Heavens Gate, Morrison Ridge, and Rapid River thrusts on the 
Salmon River transect (Fig. 2).
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thrust (Fig. 8B). We interpret that these intervals of inverted temperatures 
approximately demarcate the lower and upper boundaries of high-​strain, top-​
to-​the-​west ductile shearing accommodated within the Pollock Mountain shear 
zone (e.g., Long et al., 2016).

Rocks within the Rapid River thrust sheet experienced prograde meta-
morphism between ca. 130–​111 Ma (McKay et al., 2017; Gray et al., 2020) and 
achieved a peak depth range of ~28–​32 km (Table 2) (Selverstone et al., 1992; 
McKay et al., 2017) and a mean peak temperature of 577 ± 30 °C (Fig. 8A). The 
timing of prograde metamorphism of the Rapid River thrust sheet overlaps 
with the ca. 121–​117 Ma initial exhumation-​related cooling of the overlying 
Pollock Mountain thrust sheet, which McKay et al. (2017) interpreted as evi-
dence for the in-​sequence westward progression of thrust-​related burial and 
exhumation in the Salmon River suture zone (Fig. 9C). The accretion and ini-
tiation of top-​to-​the-​west translation of the Rapid River thrust sheet is dated 
by exhumation-​related cooling through ~500 °C as early as ca. 117 Ma in the 
western portion of the thrust sheet and between ca. 111–​105 Ma in the central 
portion (Selverstone et al., 1992; McKay et al., 2017) (Fig. 9D).

Along the Salmon River transect, mean peak temperatures increase upward 
across the Morrison Ridge thrust from ~358 °C to ~426 °C (Fig. 8A). Above this, 
temperatures increase upward from ~427 °C to ~604 °C within a thin thrust 
sheet in the footwall of the Rapid River thrust, defining a steep inverted ther-
mal gradient (Fig. 8A). The presence of multiple thrust sheets between the 
Morrison Ridge and Rapid River thrusts that exhibit upward-​increasing peak 
temperatures is compatible with progressive footwall imbrication within an 
east-​dipping, top-​to-​the-​west thrust zone (Figs. 9D and 9E). The significant 
temperature increase in the footwall of the Rapid River thrust could be the con-
sequence of displacement on an unmapped thrust fault within the Lucile Slate 
or distributed top-​to-​the-​west simple shear within a high-​strain zone of ductile 
shearing within the Lucile Slate. Telescoping of isotherms within this interval 
may have also been aided by lineation-​parallel stretching and foliation-​normal 
thinning, which has been documented within portions of the Rapid River and 
Heavens Gate thrust sheets using measurements of outcrop-​scale stretched 
clasts (Aliberti, 1988; Blake, 1991; Gray et al., 2020). Regardless of the specific 
style of strain, we interpret that the 150-​m-​thick thrust sheet in the footwall of 
the Rapid River thrust on the Salmon River transect is a high-​strain zone that 
accomplished significant differential top-​to-​the-​west displacement (Fig. 8A).

On the Pollock Mountain transect, peak temperatures collected from the 
400-​m-​thick Morrison Ridge thrust sheet increase upward, with the lowest 
sample yielding ~373 °C and the highest three samples yielding a mean of 
~542 °C (Fig. 8B). The significant upward increase in metamorphic tempera-
ture between these two domains, which are only separated by 50 m structural 
distance, may be the consequence of internal thrust imbrication within the 
Morrison Ridge thrust sheet, perhaps along an unmapped, intraformational 
top-​to-​the-​west thrust fault within the Martin Bridge Limestone. Alternatively, 
distributed top-​to-​the-​west simple shear and/or thrust-​subnormal thinning 
(e.g., Aliberti, 1988; Blake, 1991; Gray et al., 2020) may have also contributed 
to the telescoping of isotherms within this package. Regardless of the specific 

geometric scenario, the upward increase from ~373 °C at the base of this 
package to an average of ~563 °C in the overlying Rapid River thrust sheet 
(Fig. 8B) suggests that the 400-​m-​thick Morrison Ridge thrust sheet is also likely 
a high-​strain zone that accomplished significant top-​to-​the-​west displacement 
on the Pollock Mountain transect.

The Heavens Gate thrust demarcates the basal structural level of penetra-
tive ductile fabrics in the Salmon River suture zone (Gray and Oldow, 2005; 
Gray et al., 2020). Gray et al. (2020) documented that displacement on the 
Heavens Gate thrust postdated ca. 136 Ma intrusion of diorite in its hanging 
wall. Additionally, Casares et al. (2021) dated diorite dikes that intrude rocks 
beneath the Heavens Gate thrust, which experienced greenschist-​facies meta-
morphism along with the country rocks that they intruded. The youngest two 
of these dikes yielded U-​Pb zircon crystallization ages of 120 ± 1.0 Ma, which 
constrain the maximum age of burial-​related metamorphism of the footwall 
of the Heavens Gate thrust. On the basis of this field relationship, we suggest 
that displacement on the Heavens Gate thrust is ca. 120 Ma or younger. Based 
on the ~358 °C mean peak temperature of the Heavens Gate thrust sheet 
(Fig. 8A), accretion may have taken place at depths as shallow as ~10–​20 km 
(Figs. 9D and 9E).

In summary, we interpret the stacked series of penetratively deformed 
thrust sheets in the western portion of the Salmon River suture zone as a ductile 
accretionary complex (e.g., Pavlis, 1986; Dunlap et al., 1997) that records the 
progressive underplating of ductile thrust sheets that were transferred to the 
North American plate from the leading edge of the Wallowa terrane during 
Early Cretaceous (ca. 144–​105 Ma) A-​type subduction. We interpret the stepwise 
decrease in peak temperatures moving structurally downward and westward 
as the consequence of stacking of thrust sheets at progressively shallower 
depths with time during accretion, which started at ~30–​35 km depths (Pollock 
Mountain thrust sheet) and completed at depths likely as shallow as ~10–​20 km 
(Heavens Gate thrust sheet) (Figs. 9B–​9E). Whether or not this system is a 
true ductile duplex versus a ductile imbricate system depends on whether 
the up-​dip portions of individual thrust faults were emergent at the time of 
their displacement (e.g., Boyer and Elliott, 1982), which is unknown. However, 
given the considerable depth at which they were emplaced, we consider it 
likely that the Salmon River suture zone developed as a ductile duplex system.

Following (or perhaps partially overlapping with) (Gray et al., 2020) the con-
struction of the ductile accretionary complex, dextral transpressional shearing 
on the western Idaho shear zone between ca. 105–​90 Ma (timing range from 
Giorgis et al., 2008) overprinted the eastern portion of the suture zone (e.g., 
McClelland et al., 2000; Tikoff et al., 2001; Giorgis et al., 2008) (Figs. 1 and 9F). 
Deformation in the western Idaho shear zone generated steeply east-​dipping, 
linear-​planar ductile fabrics, and is interpreted to have accomplished northward 
translation of the accreted rocks to its west and significant (perhaps as much 
as ~100 km), internal east-​west shortening (Giorgis and Tikoff, 2004; Giorgis 
et al., 2005). Late-​stage duplexing may have taken place at depth beneath the 
central portion of the Salmon River suture zone, either prior to or during dextral 
transpressional shearing (e.g., Blake et al., 2009), as a possible mechanism to 
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construct the long-​wavelength folds on the Salmon River transect (the Riggins 
synform and Lake Creek antiform) (Fig. 9F). Alternatively, these folds could be 
the consequence of a westward-​decreasing strain gradient associated with the 
east-​west shortening accomplished in the western Idaho shear zone.

■■ 5. CONCLUSIONS

(1)	Penetratively deformed, 1–​3-km-​thick ductile thrust sheets in the western 
portion of the Salmon River suture zone exhibit isothermal peak tempera-
tures, which decrease moving structurally downward from ~650 °C (Pollock 
Mountain thrust sheet), to ~575 °C (Rapid River thrust sheet), to ~425 °C 
(Morrison Ridge thrust sheet), to ~360 °C (Heavens Gate thrust sheet).

(2)	We interpret the western portion of the Salmon River suture zone as a 
ductile accretionary complex that records the progressive underplating 
and top-​to-​the-​west translation of ductile thrust sheets derived from the 
Wallowa island arc terrane during its Early Cretaceous (ca. 144–​105 Ma) 
collision with North America. Accretion of thrust sheets initiated at depths 
of ~30–​35 km and completed at depths likely as shallow as ~10–​20 km.

(3)	Ductile thrust sheets in the accretionary complex are separated by 100–​
500-m-​thick intervals of inverted temperatures that surround the mapped 
positions of thrust faults. We interpret that these intervals delineate the 
approximate spatial limits of zones of high-​strain ductile shearing in 
which the majority of top-​to-​the-​west, thrust-​sense displacement was 
accommodated.
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