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ABSTRACT
Quantifying the processes that control exhumation is essential for understanding the evo-

lution of mountain belts. In the Cordilleran orogen in Nevada (western United States), rocks 
exhumed in the Ruby–East Humboldt metamorphic core complex underwent 4 ± 2 kbar of 
decompression between 85 and 60 Ma, which has been interpreted as a consequence of syn-
orogenic extension. However, evidence for significant normal faulting in this region prior to 
45 Ma is lacking. Here, we present an alternative interpretation: that this decompression can 
be attributed to distributed ductile thinning (DDT) of mid-crustal metamorphic rocks above 
the basal Cordilleran décollement during eastward translation. Such a process has been docu-
mented within the Himalayan Main Central thrust sheet, which locally accommodated up to 
15 km of DDT during Miocene translation. Other examples of DDT have been documented 
in the Alpine and Caledonian orogens (Europe), and the Sanbagawa belt (Japan). DDT may 
represent a widespread exhumation process that can account for a significant portion of the 
decompression path of deeply exhumed rocks. As a condition of strain compatibility, thrust-
parallel stretching accompanying DDT is expected to enhance displacement magnitude in the 
transport direction, and is therefore an important component of the deformation field that 
must be considered for accurate assessment of mass balance in thrust systems.

INTRODUCTION
Understanding the relative contributions of 

processes that exhume rocks during and after 
orogenesis is critical for elucidating the com-
plete cycle from construction to dismemberment 
of an orogen (e.g., England and Molnar, 1990; 
Ring et al., 1999). Exhumation in mountain 
belts is generally attributed to two primary pro-
cesses (Fig. 1A): stream erosion that becomes 
enhanced as elevations increase during crustal 
thickening, and tectonic denudation of the foot-
walls of normal faults and detachment systems 
(e.g., Wernicke and Burchfiel, 1982; Platt, 1993; 
Willett and Brandon, 2002). However, a third 
potential exhumation process, distributed ductile 
thinning (DDT) during contractional deforma-
tion, has received considerably less attention 
(e.g., Feehan and Brandon, 1999; Ring et al., 
1999; Ring and Kassem, 2007). Here, we argue 
for the importance of this exhumation mecha-
nism by highlighting case studies of DDT within 
thick, hot orogens including the North American 

Cordillera and the Himalaya. The occurrence of 
DDT has global implications for the relative im-
portance of synorogenic exhumation processes, 
and for accurate quantification of orogenic mass 
balance.

DISTRIBUTED THINNING IN THE 
NORTH AMERICAN CORDILLERA IN 
NEVADA, USA
The Conundrum of Late Cretaceous 
Decompression

The North American Cordillera was con-
structed between the Jurassic and Paleogene 
in response to interplate coupling induced by 
Andean-style subduction (e.g., DeCelles, 2004). 
At the latitude of Nevada and Utah (western 
United States), the majority of Cordilleran up-
per-crustal shortening (150–220 km) was ac-
commodated in the frontal Sevier fold-thrust belt 
between ca. 150 and ca. 50 Ma (e.g., DeCelles, 
2004; Yonkee and Weil, 2015) (Fig. 1B). This 
fold-thrust belt projects westward under Nevada 
and is interpreted to have rooted into a master 
shear zone located at or beneath the contact be-
tween Neoproterozoic sedimentary rocks and 

Archean–Proterozoic crystalline basement (e.g., 
Miller and Gans, 1989).

By the Late Cretaceous, eastern Nevada was 
likely a high-elevation plateau with 50–60-km-
thick crust (e.g., Coney and Harms, 1984). Be-
tween 70 and 90 Ma, this hinterland plateau 
experienced widespread granitic magmatism 
(e.g., Miller and Gans, 1989; Long and Soig-
nard, 2016), which has been attributed to lower-
crustal anatexis triggered by lithospheric delam-
ination (Wells and Hoisch, 2008). Magmatism 
was contemporary with peak metamorphism 
recorded in mid-crustal rocks that are now ex-
humed within several core complexes, includ-
ing in the Ruby–East Humboldt core complex 
(REH) between ca. 89 and ca. 77 Ma (McGrew 
et al., 2000; Hallett and Spear, 2014, 2015). 
Pressure-temperature-time (P-T-t) paths from 
REH rocks define cooling and decompression 
from ∼800 °C and ∼8–11 kbar to ∼650 °C and 
∼5–6 kbar between ca. 85 and ca. 60 Ma, and to 
∼500–550 °C and ∼3–4 kbar between ca. 50 and 
ca. 28 Ma (McGrew et al., 2000; Henry et al., 
2011; Hallett and Spear, 2014, 2015).

The early (ca. 85–60 Ma) decompression 
recorded in the REH has been interpreted as 
the consequence of extension of the middle and 
upper crust, which was coeval with shortening in 
the Sevier fold-thrust belt (Hodges et al., 1992; 
McGrew et al., 2000; Wells and Hoisch, 2008). 
However, field relationships in the region sur-
rounding the REH (summarized by Henry et al. 
[2011]) indicate minimal (if any) normal fault-
ing before ca. 45 Ma, which has generated a 
long-standing debate over the processes respon-
sible for Late Cretaceous decompression. Only a 
single pre-Eocene normal fault has been report-
ed from this region, 45 km to the east of the REH 
(Camilleri and Chamberlain, 1997). Low-tem-
perature thermochronometry and a lack of dif-
ferential tilting between Eocene volcanic rocks 
and Miocene sedimentary rocks indicate that the 
inception of widespread normal faulting in this *E-mail: sean.p.long@wsu.edu
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region was no earlier than the middle Miocene 
(Colgan et al., 2010; Henry et al., 2011).

Evidence in Support of Distributed Ductile 
Thinning

In the northeastern part of the REH, P-T-t 
paths determined from samples collected 
from two structural domains—the Lizzies Ba-
sin block in the south, and the Winchell Lake 
nappe in the north (Fig. 2)—demonstrate simi-
lar exhumation histories (McGrew et al., 2000; 
Hallett and Spear, 2014). These samples were 
collected from a 1.5 km total structural thick-
ness (Fig. 2A), and they lie below the interval 
of deformation associated with the overlying, 
top-down-to-west, extensional mylonitic shear 
zone that exhumed the REH between the Eocene 
and Miocene (Henry et al., 2011). P-T-t paths 
from these rocks (Fig. 2B) (Hallett and Spear, 
2015) define significant condensing of struc-
tural levels between the Late Cretaceous and 
Paleocene (Fig. 2C). During attainment of peak 
pressures, which occurred between ca. 89 and 
78 Ma in the Lizzies Basin block and ca. 83 and 
77 Ma in the Winchell Lake nappe, rocks that 

now compose this 1.5-km-thick interval spanned 
between ∼8 and ∼11.5 kbar, corresponding to 
an original thickness range of 7–13 km. By ca. 
59–61 Ma, rocks in both the Lizzies Basin block 
and Winchell Lake nappe had been exhumed 
to a relatively narrow pressure range of ∼5–6.5 
kbar, indicating a general condensing of these 
rocks into a narrower (4–6 km) structural thick-
ness range.

Migmatitic rocks are abundant in the Lizzies 
Basin block and Winchell Lake nappe, and both 
of these structural domains underwent deforma-
tion and initial exhumation in the presence of 
melt (McGrew et al., 2000; Hallett and Spear, 
2014). Following widespread leucogranite gen-
eration at ca. 85 Ma (Henry et al., 2011), melt 
crystallization in the Lizzies Basin block ini-
tiated by 80 Ma, and melt was present for at 
least the earliest period of decompression (Hal-
lett and Spear, 2015). Melt crystallization in the 
Winchell Lake nappe spanned from 77 to 59 Ma, 
with melt likely present for a significant fraction 
of the decompression path (Hallett and Spear, 
2015). Partial melting greatly enhanced the po-
tential for ductile flow, promoting high-strain 

penetrative stretching and thinning (e.g., Rosen-
berg and Handy, 2005). In the Winchell Lake 
nappe, Neoproterozoic to Mississippian sedi-
mentary units of the Cordilleran passive margin 
basin were ductilely thinned from an original 
stratigraphic thickness of ∼8 km (Colgan et al., 
2010) to only a few hundred meters (McGrew 
et al., 2000; Henry et al., 2011) (Fig. 2A), and 
in the Lizzies Basin block, ductile thinning of 
Neoproterozoic–Cambrian rocks reduced their 
structural thickness to ∼1.5 km (McGrew et al., 
2000). This corresponds to ∼80%–95% vertical 
thinning.

Based on the evidence for condensing of 
structural levels, melt-present deformation 
during exhumation, and extreme attenuation of 
stratigraphic units, we propose that distributed 
subhorizontal stretching and subvertical thin-
ning of mid-crustal rocks above the basal Sevier 
décollement best explains the 4 ± 2 kbar of de-
compression documented in the REH between 
ca. 85 and ca. 60 Ma (Fig. 3). We propose that 
this mid-crustal strain was kinematically linked 
to shortening in the Sevier fold-thrust belt (dis-
cussed below), which may solve the conundrum 
of missing pre-Eocene normal faulting in north-
eastern Nevada.

Observations from deeply exhumed rocks 
in the surrounding region of Nevada and Utah 
highlight additional evidence for distributed 
subvertical thinning during Cretaceous east-
vergent translation above the basal Sevier dé-
collement (Fig. 1C). In the Wood Hills and 
Pequop Mountains, 20–45 km to the east of 
the REH, greenschist- and amphibolite-facies 
metasedimentary rocks accommodated as much 
as 30%–50% bedding-subparallel, pure shear–
dominated flattening (estimated by compari-
son to stratigraphic thicknesses in surrounding 
ranges) during Cordilleran prograde metamor-
phism at paleodepths of 15–25 km (Camilleri, 
1998). To the east in the Sevier thrust belt, the 
basal 5 km of the Willard thrust sheet experi-
enced thrust-subparallel stretching and as much 
as 50% thrust-normal thinning at paleodepths 
of 10–15 km and deformation temperatures of 
300–400 °C (Yonkee, 2005). In the Deep Creek, 
Schell Creek, and Snake Ranges, 150–200 km 
to the southeast of the REH, Miller and Gans 
(1989) documented east-vergent shear fabrics 
that illustrate a downward-increasing compo-
nent of pure shear–dominated, subvertical thin-
ning. They interpreted these fabrics to represent 
distributed shear above the basal Sevier décol-
lement at paleodepths of 8–12 km.

These studies provide evidence that much 
of the Cordilleran middle crust was undergo-
ing DDT (Fig. 3B), which contributed to de-
compression of the REH rocks to ∼5–6.5 kbar 
(∼19–25 km depths) by ca. 60 Ma. Therefore, in 
addition to experiencing significant internal thin-
ning, the REH rocks were also exhumed by DDT 
of overlying mid-crustal rocks. The ∼80%–95% 
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Figure 1.  (A) Schematic diagrams illustrating three different exhumation processes that can 
operate during orogenesis (P1 = initial pressure, P2 = pressure after exhumation), including 
erosion, tectonic denudation accompanying normal faulting, and distributed ductile thinning 
(DDT). Schematic strain ellipses are shown for each process. (B) Map of major components of 
western United States portion of Cordilleran orogen (modified from DeCelles, 2004). Red poly-
gons are Cordilleran magmatic arc rocks, black polygons are metamorphic core complexes, and 
“LFTB” is Luning-Fencemaker thrust belt. (C) Map of northeastern Nevada and northern Utah 
showing ranges in yellow (polygons from McQuarrie and Wernicke, 2005), metamorphic core 
complexes in dark gray (REH—Ruby–East Humboldt; RAG—Raft River–Albion–Grouse Creek; 
SR—Snake Range), and Cordilleran contractional structures. Numbered localities correspond 
to documented sites of distributed subhorizontal stretching and subvertical thinning during 
Cordilleran contractional deformation, including: 1—Wood Hills (WH) and Pequop Mountains 
(P) (Camilleri, 1998); 2—basal portion of Willard thrust sheet at Fremont Island (FI) and Pinev-
iew area (PV) (Yonkee, 2005); 3—Deep Creek (DC), Schell Creek (SC), and Southern Snake (SS) 
ranges (Miller and Gans, 1989). WA—Washington; OR—Oregon; NV—Nevada; CA—California; 
ID—Idaho; MT—Montana; WY—Wyoming; UA—Utah; AZ—Arizona.
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vertical thinning implied by attenuation of the 
REH rocks at ∼30–43 km depths (Henry et al., 
2011) combined with the ∼30%–50% vertical 
thinning at ∼15–25 km depths (Camilleri, 1998) 
defines an upward-decreasing strain gradient 
(Fig. 3B). Erosion may also have contributed to 
decompression; however, syn-Cordilleran ero-
sion magnitudes in northeastern Nevada were 
minimal (∼2–3 km; Long, 2012).

ANALOGOUS EXAMPLES
The Himalaya

In the Himalayan orogen, DDT is locally 
recorded within the Greater Himalayan sec-
tion, a thick package of amphibolite-facies 
rocks that were translated southward above the 
Main Central thrust during the Miocene (e.g., 

Godin et al., 2006). In several places across the 
orogen, peak pressures collected through thick 
sections of Greater Himalayan rocks define up-
right, super-lithostatic field gradients that have 
been interpreted as the result of distributed, 
post–peak metamorphic thinning (Fig. 4B). 
In central Bhutan, pressures collected from 

a 10-km-thick section of migmatitic Greater 
Himalayan rocks and overlying Tethyan Hi-
malayan rocks systematically decrease upward 
from 10–11.5 kbar to 4.5–6.5 kbar, defining a 
field gradient of 0.57 ± 0.08 kbar/km, which is 
∼2× greater than a typical lithostatic gradient 
of 0.27 kbar/km (Corrie et al., 2012). This was 
corroborated by finite strain measurements that 
demonstrate ∼40% average, pure shear–domi-
nant, subvertical thinning during ca. 23–15 Ma 
shearing on the Main Central thrust (Long 
et al., 2011; 2017). In central Nepal, Larson 
et  al. (2010) documented ∼55% post-peak 
metamorphic vertical thinning (field gradient 
of 0.62 kbar/km) distributed through a 12 km-
thick section of migmatitic Greater Himalayan 
rocks during early Miocene translation above 
the Main Central thrust (Fig. 4B). These ex-
amples define up to 10–15 km of exhumation 
(∼3–4 kbar of decompression) of the rocks near 
the base of the thinned interval, entirely as a 
result of DDT. Overall, DDT accounts for up 
to 33%–50% of the total exhumation path of 
these rocks.

Other Orogens
Regions of several other orogenic belts also 

exhibit evidence for DDT during contraction-
al deformation (see summaries in Ring et al. 
[1999] and Yonkee [2005]). Examples of high-
magnitude DDT at temperatures ≥ 500 °C in-
clude 50% thinning in the Sanbagawa belt in 
Japan, which may have accounted for 15 km 
of total exhumation (Wallis, 1995), as much as 
75% thinning that was likely responsible for 
15 km of exhumation in the Betic Cordillera 
(Spain) (Azañón et al., 1997; Platt et al., 1998), 
subhorizontal fabric development in Norway’s 
western gneiss region indicating as much as 80% 
vertical thinning (Dewey et al., 1993), and 66% 
thinning during nappe emplacement in the Ital-
ian Alps that can account for 12 km of exhuma-
tion (Ring and Kassem, 2007). Shearing with 
a large component of subvertical thinning has 
also been documented in the Caledonian orogen 
(Europe) (Northrup, 1996; Law, 2010; Thigpen 
et al., 2010), the Calabrian arc and eastern Alps 
(Europe) (Wallis et al., 1993), and the Aegean 
region (Ring and Kumerics, 2008).

DISCUSSION
High-magnitude DDT of thrust sheets during 

shortening is evident within the ductile portions 
of many mountain belts and can account for a 
significant portion of the high-temperature de-
compression paths of deeply exhumed rocks. 
Numerous studies attribute such high-temper-
ature decompression to a combination of rapid 
erosion and/or exhumation by normal faults 
(e.g., Royden, 1993; Yin, 2006). However, ac-
commodation of DDT implies that neither ero-
sion nor normal faulting is required a priori, and 
plausibly explains P-T-t paths from orogens like 

1GSA Data Repository item 2020105, Figure DR1 
(detailed cross-section of the northern East Humboldt 
Range), Figure DR2 (detailed graph of pressure ver-
sus south-to-north distance for samples from the East 
Humboldt Range), and Table DR1 (published pressure 
determinations and timing constraints for compiled 
samples from the northern East Humboldt Range), 
is available online at http://www.geosociety.org/
datarepository/2020/, or on request from editing@
geosociety.org.
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Figure 2.  (A) Cross section of northern East Humboldt Range, Nevada, United States (no verti-
cal exaggeration; modified from Hallett and Spear [2014]; see the GSA Data Repository1 for a 
more detailed version), illustrating the deformation geometry of the Lizzies Basin block and 
Winchell Lake nappe, and extreme ductile thinning of Neoproterozoic–Mississippian rocks 
in the Winchell Lake nappe. Locations of published thermobarometry samples from Hodges 
et al. (1992), Peters and Wickham (1994), McGrew et al. (2000), and Hallett and Spear (2014) 
are projected onto the cross section. (B) Pressure-temperature-time paths for the Winchell 
Lake nappe and Lizzies Basin block showing timing constraints from monazite and zircon 
geochronology (simplified from Hallett and Spear, 2015). Ky—kyanite; Sil—sillimanite; And—
andalusite. (C) Graph of pressure versus south-to-north distance, illustrating decompression 
paths of the samples shown in A, as constrained by the geochronology of Hallett and Spear 
(2015) (see the Data Repository for supporting data and a more detailed version of this graph). 
‘Peak’ indicates the maximum pressure that each sample attained. This graph illustrates con-
densing of structural levels from ∼8–11.5 kbar range to ∼5–6.5 kbar range between ca. 83–89 Ma 
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the Cordillera and Himalaya where the hinter-
land is characterized by broad plateaus that were 
not significantly eroded or extended.

DDT also explains the development of ubiq-
uitous thrust-subparallel foliations and transport-
parallel stretching lineations within exhumed 
metamorphic terranes (e.g., Ring et al., 1999). 
Hotter, weaker rocks lose their ability to trans-
mit significant shear traction, which results in 
increasing components of pure shear–dominant, 
thrust-normal thinning and transport-parallel 
stretching (e.g., Means, 1989; Camilleri, 1998; 
Yonkee, 2005; Law et al., 2013). In quartz-rich 
rocks, DDT initiates at deformation tempera-
tures of ∼300 °C (e.g., Stipp et al., 2002; Yonkee, 
2005; Long et al., 2011), with strain magnitude 
expected to increase with increasing deforma-
tion temperature (e.g., Ring and Kassem, 2007). 
This implies that the basal décollements of brit-
tle thrust systems likely become stretching faults 

(Means, 1989) as they cut deeply beneath the 
hinterland, which has far-reaching implications 
for mass transfer in orogenic systems and for the 
kinematic relationships between hinterland and 
foreland deformation.

As a condition of strain compatibility, in the 
absence of major upper-crustal normal faulting, 
transport-parallel stretching at deep levels must 
be balanced by horizontal shortening and verti-
cal thickening in the frontal fold-thrust belt (e.g., 
Williams et al., 2006; Larson et al., 2010). The 
overall upward decrease in transport-parallel 
stretching of the thinned interval could be ac-
commodated either by a discrete normal-sense 
shear zone, such as the Himalayan South Tibetan 
detachment system (e.g., Northrup, 1996), or 
alternatively by a distributed vertical gradient in 
transport-parallel stretching (Figs. 1A and 3B), 
such as documented in the Wood Hills and Pe-
quop Mountains in Nevada by Camilleri (1998). 

For the case of the U.S. Cordillera, where syn-
orogenic upper-crustal normal faulting was 
minimal (e.g., Henry et al., 2011), we propose 
that transport-parallel stretching under the hin-
terland was kinematically linked to shortening 
in the Sevier thrust belt (Fig. 3B). Consequently, 
a portion (perhaps several tens of kilometers) 
of the 150–220 km of shortening in the Sevier 
thrust belt can likely be attributed to enhanced 
eastward displacement generated by stretching 
above the master décollement. Therefore, trans-
port-parallel stretching accompanying DDT is 
an important component of the deformation field 
that must be considered for accurate orogenic 
mass-balance assessment.
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