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a structure as other fault systems to which it has been corre-
lated. However, the younging trend in the initiation of melt 
crystallization with decreasing structural distance above the 
KT argues that progressive underplating of ductile material 
assisted in the initial emplacement of the GH unit in central 
and eastern Bhutan. The KT likely represents a minor shear 
zone that aided in this underplating process.

Keywords Himalaya · Bhutan · Greater Himalayan 
rocks · Zircon · Split-stream LA-ICPMS

Introduction

High-grade, ductile metamorphic rocks represent the sup-
porting base for orogenic belts during crustal thicken-
ing and growth. Within some active orogenic belts, and 
in many ancient orogens that have undergone collapse, 
these high-grade rocks typically show evidence of lateral 
flow and potentially extrusion from mid- to lower-crustal 
depths to the near surface (e.g., Royden et al. 1997; Beau-
mont et al. 2001; Vanderhaeghe and Teyssier 2001; Torvela 
et al. 2013). Understanding the pressure–temperature–
time evolution of these rocks—from their burial to their 
emplacement near the surface—can provide insight into the 
metamorphic and deformational processes that control the 
evolution of orogenic belts (e.g., England and Thompson 
1984; Pyle and Spear 2003; Stearns et al. 2013).

The Himalaya is considered the type example of an 
active continent–continent collisional orogen (e.g., LeFort 
1975; Hodges 2000; Yin 2006), and it formed due to col-
lision and continued convergence between the Indian and 
Eurasian plates that began at ca. 50 Ma (e.g., Rowley 1996; 
Ding et al. 2005; Leech et al. 2005; Najman et al. 2010). 
Convergence has resulted in the burial and metamorphism 

Abstract Within the eastern Himalaya in central and 
eastern Bhutan, Greater Himalayan (GH) rocks are inter-
preted to have been thickened by the Kakhtang thrust (KT). 
In order to understand the metamorphic and exhumation 
history of the GH and to evaluate the structural significance 
of the KT, zircon and monazite from twenty samples were 
analyzed by laser-ablation split-stream ICPMS. In eastern 
Bhutan, zircon and monazite from samples collected in the 
KT hanging wall revealed ca. 36–28 Ma metamorphism. 
Subsequently, the initiation of melt crystallization shows 
a trend with structural distance above the KT, with early 
melt crystallization (ca. 27 Ma) in the structurally highest 
samples and younger melt crystallization (ca. 16 Ma) for 
leucosomes within the KT zone. Melt crystallization was 
protracted and continued until ca. 14–13 Ma in both the KT 
hanging wall and the footwall. In comparison, in central 
Bhutan, two leucosomes revealed extended melt crystal-
lization from ca. 31 to 19 Ma. The youngest zircon dates 
from samples exposed structurally above and below the KT 
are similar, indicating that the KT was not as significant of 
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of a composite series of sedimentary basins that had once 
covered the northern margin of India (e.g., Molnar 1984; 
Mattauer 1986; Hodges 2000; Yin and Harrison 2000; 
DeCelles et al. 2002). These rocks have been translated 
southward and structurally imbricated, forming the Himala-
yan fold–thrust belt and producing significant crustal thick-
ening and several kilometers of topographic uplift (e.g., 
Molnar 1984). Within the hinterland of the fold–thrust belt, 
some of these sedimentary rocks are currently exposed as 
a thick section of exhumed mid- to lower-crustal rocks, 
referred to here as the Greater Himalayan (GH) rocks (e.g., 
Gansser 1964; Hodges 2000; Yin 2006).

Across much of the eastern Himalaya, the GH is struc-
turally thickened and divided into two units by an intra-GH 
shear zone (Gansser 1983; Swapp and Hollister 1991; Yin 
et al. 2006; Chakungal et al. 2010; Warren et al. 2011a; 
2014). Within the central and eastern part of the kingdom 
of Bhutan, the Kakhtang thrust (KT) separates the GH into 
structurally higher (upper-GH) and structurally lower lev-
els (lower-GH) (Fig. 1; Grujic et al. 2002). Multiple studies 
have investigated the petrologic, structural, and protolith 

history of the lower-GH, revealing evidence for upper 
amphibolite-facies to upper greenschist-facies peak meta-
morphic conditions (Davidson et al. 1997; Daniel et al. 
2003; Corrie et al. 2012), with minimal evidence for partial 
melting in the upper part of the unit (Long and McQuarrie 
2010).

In contrast, in the upper-GH in central and eastern Bhu-
tan, field observations suggest overall higher-grade meta-
morphic conditions in comparison with the lower-GH. 
Some of the upper-GH rocks may have crossed the second 
sillimanite isograd, and there is a higher volume percent-
age of crystallized melt exposed in the form of migmatites 
and crosscutting dikes found in outcrops throughout the 
unit, as well as in regional-scale leucogranite bodies (e.g., 
Swapp and Hollister 1991; Grujic et al. 2002). Because 
the presence of a small amount (>7 vol%) of melt can lead 
to a drastic reduction in the strength of rocks (Rosenberg 
and Handy 2005), it is important to understand the timing 
and conditions under which melting began and crystallized 
(e.g., Jamieson et al. 2011), as well as the timing and con-
ditions of metamorphism and deformation.

28°N

27°N

91°E90°E89°E 92°E

GHZ
LHZ

Delhi

India

THZ

Bhutan

80°E 90°E

20°N

30°N

0 20 40
kilometers

Outer 
STD

Outer 
STD

MCT

MCT

MCT

KT

MBT

MBT
MFT

?

?

?

?

ST
ST

ST

LT

?

?

Inner STD

MFT

Kuru Chu
transectBumthang Chu

 transect

Lhuentse

Jakar

Sampling
transect 

Thrust

SynclineAnticlineChekha Formation

Tethyan (Tibetan)  Himalaya:
Paleozoic and Mesozoic, undiff.

Maneting Formation

Greater Himalaya:
Higher structural level, leucogranite

Higher structural level, undifferentiated

Lower structural level, orthogneiss unit

Lower structural level, upper metased. unit

Lower structural level, lower metased. unit

Paro Formation

Quaternary sediment

Lower Lesser Himalayan units

Subhimalaya (Siwalik Group)

Paro Fm., Lesser and Subhimalaya:

Upper Lesser Himalayan units

Ura klippe

High-Angle
Normal Fault

Low-Angle
Normal Fault

Fig. 1  Simplified geologic map showing major lithologic and struc-
tural units of Bhutan and surrounding regions, modified from Long 
et al. (2012). Transects from this study are in highlighted in red. 
Inset: major lithologic units and geographic location of Bhutan within 

the Himalaya. STD South Tibetan detachment, KT Kakhtang thrust, 
LT Laya thrust, MCT Main Central thrust, ST Shumar thrust, MBT 
Main Boundary thrust, MFT Main Frontal thrust, THZ Tethyan Hima-
layan zone, GH Greater Himalayan zone, LH Lesser Himalayan rocks
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This investigation presents new laser-ablation split-
stream inductively coupled plasma mass spectrometry 
(LASS-ICPMS) zircon and monazite geochronology and 
trace-element analyses from twenty pelitic, leucocratic, and 
gneissic samples collected along two transects through the 
GH that cross the KT in central and eastern Bhutan. The 
data were collected to constrain the timing of melt crystal-
lization and metamorphism across the unit and are used to 
evaluate the driving mechanisms for exhumation of the GH 
rocks and the role of the KT in the history of the eastern 
Himalaya.

Geologic setting

Himalayan orogenic belt

The Himalayan orogenic belt consists of four main tecton-
ostratigraphic zones that are exposed parallel to the strike 
of the orogen (e.g., Gansser 1964; LeFort 1975; Hodges 
2000; Yin 2006). From north to south, the units include the 
Tethyan Himalayan rocks, the GH rocks, the Lesser Him-
alayan rocks (LH), and the SubHimalayan rocks (Fig. 1). 
The Tethyan Himalaya is comprised of low-grade to 
unmetamorphosed sedimentary rocks that were originally 
deposited in the early Paleozoic–early Tertiary southern 
passive-margin basin of the Tethyan Ocean (e.g., Gaetani 
and Garzanti 1991; Garzanti 1999; Yin and Harrison 2000). 
Tethyan Himalayan rocks are juxtaposed against GH rocks 
across the South Tibetan detachment (STD), a system of 
top-to-the-north shear zones and normal faults (Burchfiel 
et al. 1992; Hodges 2000). The GH dominantly consists of 
(upper)amphibolite-facies, locally granulite-facies, orthog-
neiss, and metasedimentary rocks, which typically show 
evidence for having undergone melting during Himalayan 
orogenesis (e.g., Gansser 1964; Harrison et al. 1997, 1998; 
Hodges 2000). In addition, large Miocene leucogranite 
intrusions are exposed within the GH (Hodges 2000).

The GH structurally overlies the LH, which consists of 
Paleoproterozoic to Permian greenschist-facies to unmeta-
morphosed sedimentary rocks (e.g., Yin 2006; Myrow et al. 
2009; Kohn et al. 2010; Long et al. 2011a; Martin et al. 2011) 
that have been deformed into a south-vergent fold–thrust 
belt (e.g., Schelling and Arita 1991a, b; Srivastava and Mitra 
1994; Robinson et al. 2006; Mitra et al. 2010; Long et al., 
2011b). The Main Central thrust (MCT), a top-to-the-south-
sense ductile shear zone, separates these two zones (Heim 
and Gansser 1939; Gansser 1964, 1983; Grujic et al. 2002; 
Yin 2006). Finally, the SubHimalayan rocks represent sedi-
ments deposited in the syn-orogenic, Neogene–Quaternary 
foreland basin that subsided south of the Himalayan oro-
genic belt. They are now juxtaposed structurally below the 
LH across the Main Boundary thrust and are bound at their 

base by the Main Frontal thrust, which represents the modern 
Himalayan deformation front (e.g., Gansser 1964; Burbank 
et al. 1996; DeCelles et al. 1998; 2004; Huyghe et al. 2005).

Bhutan: the eastern Himalaya

While these four tectonostratigraphic zones are present in 
Bhutan, this part of the eastern Himalaya reveals some dis-
tinct structural features, including, in central and eastern 
Bhutan, the Kakhtang thrust (KT; Fig. 1), which divides the 
GH into the upper- and lower-GH structural units (Fig. 1; 
Gansser 1983; Swapp and Hollister 1991; Bhargava 1995; 
Grujic et al. 2002; Daniel et al. 2003). The KT has been 
interpreted to correlate with the Laya thrust in northwest 
Bhutan (Grujic et al. 2011; Long et al. 2011c; Warren 
et al. 2011a, b) and the Zimithang thrust to the east within 
Arunachal Pradesh (Yin et al. 2006, 2010a, b; Warren et al. 
2014), and previous investigations have proposed that these 
thrust systems are out-of-sequence with respect to the 
structurally lower MCT.

The Bhutan Himalaya also contains multiple exposures 
of the STD (Fig. 1). The inner STD (Kellett et al. 2009), far-
ther to the hinterland of the orogen, represents the primary 
exposure of the fault system found across much of the Hima-
laya. The inner STD juxtaposes Tethyan Himalayan rocks 
against the GH, and in Bhutan, more specifically the upper-
GH. In comparison, the outer STD (Kellett et al. 2009) is 
exposed closer to the orogenic front and separates isolated 
Tethyan sedimentary rocks from the lower-GH (e.g., Grujic 
et al. 2002). Four of these Tethyan exposures are interpreted 
as Klippen above ductile, normal-sense shear zones (Kellett 
et al. 2010), whereas an exposure in south-central Bhutan has 
been interpreted to represent an intact depositional sequence 
from the lower-GH through Tethyan Himalayan rocks (Fig. 1; 
Long and McQuarrie 2010; Corrie et al. 2012).

Limited geochronologic data place constraints on the 
timing of the structures that bound the upper-GH. By ca. 
16 Ma, monazite from leucogranite within the outer STD 
zone had crystallized (Kellett et al. 2010). Subsequently, 
deformation is interpreted to have shifted to higher struc-
tural levels, initiating coeval movement on the KT and 
inner STD at ca. 16 Ma in central and eastern Bhutan (Gru-
jic et al. 2002; Daniel et al. 2003; Kellett et al. 2009). The 
inner STD continued to be active until at least ca. 11 Ma 
(Edwards and Harrison 1997; Wu et al. 1998; Kellett et al. 
2009). Therefore, Grujic et al. (2002) postulated that the 
KT and inner STD were concurrently active from ca. 16 to 
11 Ma.

GH units

The majority of the upper-GH, located in the hanging wall 
of the KT and below the inner STD in central and eastern 
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Bhutan (Fig. 1), is composed of upper amphibolite-facies 
orthogneiss, metasedimentary rocks, and Miocene gran-
ite intrusions (Gansser 1983; Swapp and Hollister 1991; 
Davidson et al. 1997; Grujic et al. 1996, 2002; Daniel 
et al. 2003; Long et al. 2011b, c), although no published 
quantitative estimates of peak metamorphic pressures and 
temperatures have been described from these rocks. Gru-
jic et al. (1996) presented a single deformation temperature 
estimate between ca. 650 and 750 °C from a leucogranite 
dike injected into the KT zone. In addition, sparse geochro-
nologic data exist for the upper-GH in central and eastern 
Bhutan. The only existing date is from a dike within the 
KT zone, which was interpreted to limit the maximum tim-
ing of movement on the KT to ca. 15–14 Ma (Grujic et al. 
2002; Daniel et al. 2003).

Most of the structural, petrologic, and geochronometric 
work on the Bhutan upper-GH has been concentrated in 
the region exposed above the Laya thrust in western Bhu-
tan (Fig. 1). In addition to gneiss and granite, rare granu-
litized eclogites, found in northwestern Bhutan and also to 
the west in the Arun Valley in eastern Nepal and the Ama 
Drime Range in southern Tibet, revealed that these rocks 
achieved eclogite-facies conditions of ≥14 kbar/580 °C 
at ca. 21–14 Ma, followed by a granulite-facies over-
print of 7–12 kbar/750–800 °C at ca. 14–13 Ma (Groppo 
et al. 2007; Cottle et al. 2009; Corrie et al. 2010; Grujic 
et al. 2011; Warren et al. 2011a). In addition, migmatitic 
gneisses, leucosomes, and granite have yielded crystalli-
zation ages of ca. 16–11 Ma (zircon; Kellett et al. 2009) 
and ca. 15–13 Ma (monazite; Edwards and Harrison 1997; 
Warren et al. 2011b) from the upper-GH in western Bhu-
tan. 40Ar/39Ar muscovite cooling ages from just north of 
the western Bhutan border suggest that the upper-GH expe-
rienced rapid cooling and exhumation by ca. 11–10 Ma 
(Maluski et al. 1988).

Structurally below the KT, the lower-GH is composed 
of orthogneiss and metasedimentary rocks. In eastern-
most Bhutan, these rocks experienced peak pressures that 
increase structurally upward from 8–12 kbar/650–700 °C 
just above the MCT to 10–14 kbar/750–800 °C in the mid-
dle of the unit (Daniel et al. 2003). These rocks subse-
quently followed a near-isothermal decompression path to 
4–6 kbar (Swapp and Hollister 1991; Davidson et al. 1997). 
Non-migmatitic rocks just below the KT in east–central 
Bhutan revealed lower-grade conditions of 600 °C/8 kbar 
(Davidson et al. 1997). Finally, in south-central Bhutan, the 
lower-GH experienced peak temperatures of ~650–700 °C 
at ~10–11 kbar in migmatitic rocks just above the MCT, 
and the P–T conditions decrease moving structurally higher 
in the unit to 550–600 °C at 7–9 kbar in non-migmatitic 
rocks at the top of the lower-GH (Corrie et al. 2012).

In regard to the timing of lower-GH metamorphism, in 
western Bhutan, monazite associated with sillimanite-facies 

metamorphism yielded dates of 21–17 Ma (Warren et al. 
2011b), whereas monazite from western Bhutan gran-
ite crystallized nearly coevally between ca. 24 and 18 Ma 
(Carosi et al. 2006). In central Bhutan, a kyanite-bearing 
schist within the lower-GH below the Ura klippe (Fig. 1) 
yielded dates from monazite included in garnet and kyanite 
at ca. 26–21 Ma, indicating the timing of prograde meta-
morphism, and ca. 20–15 Ma from matrix monazite, inter-
preted as dating peak metamorphic conditions (Kellett et al. 
2010). Moving farther east, monazite from a schist just 
above the MCT was interpreted to record prograde meta-
morphism from ca. 24 to 22 Ma (Daniel et al. 2003), and 
in the same area, monazite and xenotime dates from lower-
GH leucogranite revealed crystallization ages between ca. 
18 and 14 Ma near the MCT, decreasing to ca. 13.5 Ma in 
the middle of the lower-GH (Daniel et al. 2003).

Previous studies have interpreted the lower-GH as a duc-
tile channel, bounded below by the MCT and above by the 
outer STD (Grujic et al. 1996, 2002; Hollister and Grujic 
2006; Kellett et al. 2009). However, Long and McQuar-
rie (2010) found that the magnitude of channel-type flow 
within the lower-GH in central Bhutan is small, only repre-
senting 12–15 % of the total amount of shortening recorded 
in the Himalayan thrust belt in Bhutan. This, combined 
with a petrologic study that did not show evidence for a 
major decrease in P–T conditions across the structural level 
that had previously been mapped as the outer STD (Corrie 
et al. 2012), was used to argue that large-scale channel flow 
was unlikely in the lower-GH.

Methods

Twenty samples were collected along the Kuru Chu and 
Bumthang Chu in northeast and north-central Bhutan 
(Fig. 1), respectively, in order to determine the age varia-
tion in melt crystallization and metamorphism across two 
transects from the lower-GH, across the KT, and into the 
upper-GH (Table 1). Zircon was extracted from nine meta-
sedimentary samples, eight layer-parallel leucosomes, 
one crosscutting pegmatite, and two orthogneiss samples 
(Table 1) using standard mineral separation techniques at 
the University of Nevada, Reno. In addition, monazite was 
obtained from three of the metasedimentary rocks and one 
of the foliation-parallel leucosomes. Standard one-inch 
grain mounts were prepared, and cathodoluminescence 
(CL) and backscatter electron (BSE) images were obtained 
using the FEI Quanta 400f scanning electron microscope 
(SEM) at UC Santa Barbara for zircon and monazite, 
respectively. The images revealed internal zonation that was 
used to guide the LA-ICPMS analyses. The UC Santa Bar-
bara ICPMS facility consists of a Nu Plasma multicollector-
ICPMS (MC-ICPMS), a Nu AttoM single-collector-ICPMS, 
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an Agilent 7700x quadrupole ICPMS, and a Photon 
Machines Analyte 193 laser-ablation system. For all zir-
con and monazite analyses, the ICPMS was operated in 
split-stream mode, in which the ablated material was split 
and analyzed by the MC-ICPMS for the U–Th–Pb ratios, 
and the SC-ICPMS (Attom or 7700x) for the trace-ele-
ment abundances (see summary of technique in Kylander-
Clark et al. 2013). The laser fluence was ~3–4 J/cm2  
for all analyses, producing an ablation rate of 0.05–
0.10 µm/pulse and a typical pit depth of ~7 µm. The spot 
size was 20–30 µm depending upon the size of the zircon. 
For further details of the analyses, see the online supple-
mentary material.

The U–Th–Pb isotopic zircon results are presented in 
kernel density plots (Fig. 2; DensityPlotter 3.1; Vermeesh 
2012) for dates older than the Oligocene (or likely inherited 
dates) and in standard concordia diagrams for the Himala-
yan-age zircons (Figs. 3, 4, 5; Isoplot 3.75, Ludwig 2010). 
Results are also described in Table 1 and in online resource 
Table 1. Moreover, because monazite favors the incorpora-
tion of Th over U during crystallization, and because of the 
typical excess 206Pb in monazite (Schärer 1984), 208Pb/232Th 
dates are reported for the monazite crystallization. The U–
Th–Pb data are represented in 206Pb/238U versus 208Pb/232Th 
concordia plots (Fig. 8; U–Pb_Redux 2.50, Bowring et al. 
2011; McLean et al. 2011), Table 1, and in online resource 

Table 2. All errors for both zircon and monazite results 
are reported at the two-sigma level. Uncertainties associ-
ated with all the geochronometric dates are a combination 
of analytical and propagated uncertainty, which accounts 
for the long-term standard reproducibility of ~2 % for the 
standards run during all sessions on the instruments.

Trace-element abundances were collected simultane-
ously with the U–Th–Pb isotopic measurements on either a 
Nu Attom single-collector ICPMS or an Agilent quadrupole 
ICPMS as described above. The rare-earth element (REE) 
patterns provide qualitative information about the likely 
presence or absence of minerals during zircon and monazite 
growth and therefore about the P–T conditions under which 
those phases crystallized. For example, if zircon growth 
occurred concurrently with garnet, zircon would exhibit 
depletion of the HREE due to the preferential incorporation 
of these elements into garnet (e.g., Rubatto and Hermann 
2007). Nearly all of the zircons from both the lower-GH and 
the upper-GH in central and eastern Bhutan exhibit a nega-
tive Eu anomaly and a positive, moderate-to-steep heavy rare-
earth element (HREE) pattern (Fig. 6; online resource Fig. 1).

In addition, for zircons analyzed with the Agilent quad-
rupole ICPMS, Ti concentrations were collected and used 
to determine Ti-in-zircon temperatures (Fig. 7, e.g., Wat-
son et al. 2006; Ferry and Watson 2007; Fu et al. 2008). 
Ti-in-zircon temperatures were calculated using the 
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Fig. 2  Kernel density estimate plots for the pre-Himalayan (pre-
Oligocene) zircons from the a LH sample; b lower-GH rocks; c the 
upper-GH, with dates from 0–600 Ma; and d the upper-GH, with 
>00 Ma dates. The upper-GH was divided into two separate plots due 

to the numerous ca. 500 Ma zircons. The bandwidth for each plot was 
calculated by DensityPlotter 3.1 (Vermeesh 2012) and represents the 
optimal value to prevent over/under smoothing
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calibration of Watson et al. (2006). For the temperature 
estimates, unit activities of TiO2 and SiO2 were assumed, 
and no pressure correction was applied. All samples con-
tained quartz and the majority of samples contained 
ilmenite, with one sample containing rutile (Table 1). Two 
samples did not contain any Ti-bearing phase. For those 
samples that do not contain rutile, the temperatures are 
treated as minimum estimates.

Like zircon, monazite trace-element patterns give quali-
tative information about the conditions of crystallization. 
Because garnet and monazite both preferentially incorpo-
rate Y + HREE into their structures, trace-element patterns 
can reflect garnet presence or absence during monazite 
growth (e.g., Kohn et al. 2005). Details describing the mon-
azite results from individual samples are reported below, as 
well as in online resource Table 4.
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For the zircon data, only the age, trace element, and ther-
mometry results from Himalayan-aged zircons are described 
in detail, with a brief discussion of the pre-Oligocene dates 
from all of the samples. Details on all of the studied samples 
are described in the online resource material.

Results

Pre‑Oligocene zircon results

Within the LH, a schist from the Jashidanda Formation 
(BU12-172c), exposed directly below the MCT, was col-
lected. The schist zircons mainly yielded inherited ages, 

with peaks at ca. 1.1, 1.3, and 1.6 Ga (Fig. 2). In com-
parison, the inherited zircons from the GH rocks revealed 
similar Proterozoic zircon age populations to the LH schist. 
However, these rocks also show younger age peaks, with 
the lower-GH rocks yielding peaks at ca. 0.5, 0.8, and 
0.9 Ga (Fig. 2). In comparison, the upper-GH rocks are 
dominated by leucocratic samples, and they showed a 
prominent ca. 500 Ma peak, with smaller Proterozoic peaks 
at ca. 1.1 and 1.6 Ga.

Metamorphic and melt crystallization zircon results

As described above, most of the zircons from the metape-
lite and orthogneiss samples yielded inherited ages (online 

Fig. 5  Standard concordia plots 
of the Oligocene–Miocene zir-
con results from the leucosome 
samples from the central Bhutan 
transect, including: a BU13-23d 
and b BU13-37b. Also shown 
are representative CL images 
with the 207-corrected age and 
spot labeled
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resource material eTable 1), with minimal Himalayan 
growth on the rims of the zircons. For example, metasedi-
mentary samples, BU12-178c, BU12-182, BU12-190b, 
and leucosome sample, BU12-190a, revealed only inher-
ited ages. Therefore, the Himalayan U–Pb results from 
the metapelite and orthogneiss samples that did yield Oli-
gocene–Miocene dates are grouped together in a single 
concordia diagram for each transect, in addition to a con-
cordia diagram for the LH schist (Fig. 3). In comparison, 
the leucocratic samples yielded abundant Himalayan-aged 
zircons, and the data show a continuum of dates that are 
within error (Figs. 4, 5). However, there is a sufficient 
spread in time that a weighted mean age typically cannot 
be calculated from the dates within a single sample. Table 1 
reports the range in the 207-corrected 206Pb/238U dates 
from each sample, and the Himalayan results from each 
leucosome and pegmatite are shown in individual concor-
dia diagrams for each transect (Figs. 4, 5).

Metasedimentary rocks and orthogneisses

From the LH schist (BU12-172c), four zircon rims revealed 
dates ranging from ca. 21 to 17 Ma (Fig. 3a). Among these 
grains, there is a decrease in the abundance of HREE with 
decreasing age (Fig. 6a).

The eastern Bhutan GH transect revealed a range of zir-
con rim dates from two metapelites and an orthogneiss. The 
youngest dates were obtained from a metapelite collected 
within the KT zone (BU12-193a), and the zircons ranged 
from ca. 16 to 14.5 Ma (Fig. 3b). These grains also yielded 
Ti-in-zircon minimum temperatures of ~565–680 °C 
(Fig. 7). The oldest dates from this transect were obtained 

from a metapelite in the upper-GH (BU12-207b), with four 
zircon rims yielding dates of ca. 37 to 28 Ma (Fig. 3b). 
Finally, the structurally highest sample, orthogneiss BU12-
221, revealed two dates of ca. 28 and 23 Ma (Fig. 3b).

The samples (BU13-01b, 04b, 18b) from the central 
Bhutan GH transect were all collected within the lower-
GH; however, they did not show dates as young as those 
observed in the lower-GH eastern Bhutan metapelite. The 
samples instead revealed a range of dates from ca. 33 to 
20 Ma (Fig. 3c), and these grains yielded Ti-in-zircon mini-
mum temperatures of ~510 to 670 °C (Fig. 7). None of the 
GH samples showed a correlation among dates and REE 
composition (online resource Fig. 1).

Leucosomes, Kuru Chu transect, eastern Bhutan

The upper-GH leucosomes showed only Himalayan-aged 
zircons. The foliation-parallel leucosome (BU12-195a) 
from just above the KT yielded some of the youngest dates 
(ca. 16 to 13 Ma) of the leucosomes (Fig. 4a). The Ti-in-
zircon minimum temperatures ranged from ~550 to 620 °C 
(Fig. 7), and these grains showed an overall increase in the 
steepness of the HREE (Lun/Dyn changes from 8 to 24) 
with decreasing age (Fig. 6b).

In comparison, the leucosomes from structurally higher 
levels within the upper-GH revealed progressively older 
age populations with increasing structural distance above 
the KT. Two foliation-parallel leucosomes, one coarse-
grained (BU12-200a) and the other finer-grained (BU12-
200b), were collected from the same outcrop. Both yielded 
abundant zircons from ca. 21 to 17 Ma (Fig. 4b, c). The 
coarser-grained leucosome also contained a young, ca. 
13 Ma zircon (Fig. 4b), whereas the finer-grained leuco-
some contained a single zircon that yielded Oligocene, ca. 
25 Ma, core dates (Fig. 4c).

Foliation-parallel leucosome (BU12-205) also yielded 
similar results to these two leucosomes, with a popula-
tion of ca. 20 Ma zircons, with a single outlier grain at 
ca. 26 Ma (Fig. 4d). Ti-in-zircon temperatures from these 
zircons revealed that minimum temperatures ranging from 
~530 to 710 °C that for the most part did not correlate with 
age; however, the oldest, ca. 26 Ma, zircon did yield the 
lowest temperature of 530 °C (Fig. 7). Moreover, the old-
est, ca. 26 and 22 Ma, grains show a distinct flatter HREE 
pattern in comparison with the other Himalayan grains 
(Fig. 6c).

The next two structurally higher leucosomes revealed a 
much wider spread in zircon crystallization (>10 Myr) and 
revealed some of the oldest leucosome crystallization dates. 
Zircons with relatively simple zoning from a foliation-par-
allel leucosome (BU12-207b) gave dates of ca. 27–22 Ma, 
whereas some grains also exhibited an additional unzoned, 
outermost rim (Fig. 4e). These unzoned rims yielded the 
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younger age populations at ca. 18 and 14 Ma (Fig. 4e). The 
chemistry of these zircons overall revealed a general age 
trend in which the steepness of the HREE increased (from 
Lun/Dyn of 2.4 to 12) as the dates became younger (Fig. 6d). 
Structurally above this, a crosscutting pegmatite (BU12-209) 
yielded a similar continuum of dates from ca. 27 to 19 Ma, 
with a younger population of grains at ca. 17 Ma (Fig. 4f). 
The Ti-in-zircon thermometry showed a range of mini-
mum temperature results from the pegmatite, from ~510 to 
700 °C; temperatures did not correlate with age (Fig. 7).

Leucosomes, Bumthang Chu transect, central Bhutan

Leucosome samples were only analyzed from the upper-
GH on the central Bhutan transect due to poor exposure 
and the large volume of quartzite and marble in the lower-
GH in this transect. The two foliation-parallel leucosome 
samples revealed similar zircon crystallization ages to the 
structurally higher samples in the eastern Bhutan transect, 
with most of the zircons crystallizing from ca. 27 to 20 Ma 
(Fig. 5).

Zircons extracted from a folded leucosome (BU13-23d) 
showed two types of zircons. Some zircons had oscilla-
tory-zoned cores and unzoned rims, whereas others had 
oscillatory-zoned or unzoned cores mantled by a darker, 
oscillatory zone, in addition to an outermost unzoned rim. 
Unzoned rims from this first type of zircon yielded dates 
ranging from ca. 28 to 24 Ma (Fig. 5a). From the sec-
ond type of zircon, the mantle zircon zone had dates of 
ca. 24–22 Ma and the outermost, unzoned rims gave the 
youngest dates of ca. 22–19 Ma, with a single isolated 
grain at ca. 14 Ma (Fig. 5a). Of these zircons, only the 
14 Ma grain yielded a distinct REE pattern: Overall, it had 
the highest REE abundances, and it yielded a relatively flat 
HREE profile (Lun/Dyn = 3.1; Fig. 6e). Moreover, the zir-
cons showed a Ti-in-zircon minimum temperature range of 
~500–680 °C with no major age trend (Fig. 7).

Zircons from the other pegmatitic leucosome (BU13-
37b) yielded a range of dates: ca. 26–20 Ma, with a younger 
population of three analyses at ca. 18 Ma (Fig. 5b). These 
Himalayan-age grains all revealed similar steep HREE pat-
terns; however, the general REE abundances increased and 
the overall steepness of the HREE pattern decreased with 
decreasing age (e.g., a ca. 26 Ma grain had a Lun/Dyn = 49 
versus the ca. 18 Ma grain revealed a Lun/Dyn = 17) 
(Fig. 6f). Ti-in-zircon minimum temperature results ranged 
from ~500 to 650 °C for the Oligocene–Miocene zircons 
and did not correlate with age (Fig. 7).

Monazite geochronology

As there were not many Himalayan-aged zircons obtained 
from the lower-GH, monazite was extracted and analyzed 

from four of the lower-GH eastern Bhutan samples. Over-
all, the monazite dates clustered around ca. 15 Ma (Fig. 8), 
and the grains from all samples had a strong negative Eu 
anomaly and a steep negative HREE slope, with Yb/Gd 
ratios ranging from 0.01 to 0.05 (Fig. 9). While there is 
some variation in the abundance of Y and the slope of the 
HREE pattern within individual samples, the patterns in the 
majority of the samples do not correlate with age (Fig. 8).

A single monazite grain was separated from schist sam-
ple BU12-178c. Three spot analyses near the rim of the 
crystal and one near the crystal core yielded a weighed-
mean average age of 15.0 ± 0.5 Ma (MSWD = 0.7; 
Fig. 8a). Despite the lack of difference in the age, these 
core and rim spots contained differences in their Y chem-
istry, with higher values in the two rims (1.0 and 1.6 wt%) 
in comparison with the core analyses (~0.6 wt%; Fig. 8a). 
In comparison, Th concentrations were consistent (4.0–
4.9 wt%) throughout the grain.

Slightly older dates were obtained from metapelite 
BU12-182, with monazite dates ranging from ca. 17 to 
15 Ma (Fig. 8b). Moreover, an additional monazite yielded 
a ca. 31 Ma Oligocene date. Overall, there was significant 
variability in the chemistry among grains, with Y and Th 
varying from 0.7 to 1.3 and 4.3 to 7.0 wt%, respectively. 
Four additional monazites yielded pre-Himalayan dates, 
ranging from ca. 110 to 680 Ma.

From the foliation-parallel leucosome, BU12-190a, and 
the metapelite, BU12-193a, monazites yielded little varia-
tion in dates among and within grains, with dates of ca. 14 
to 15 Ma (Fig. 8c, d). Among the leucosome grains, there 
was some variability in the Y content, with values ranging 
from 0.6 to 1.7 wt% (Fig. 8c). In comparison, the HREE 
patterns from the metapelite grains showed two distinct 
populations that did not correlate with age (Fig. 9c). In 
addition, the Y and Th concentrations were variable among 
the grains, ranging from 0.3 to 1.8 and 3.8 to 6.7 wt%, 
respectively. For the metapelite, the Y does correlate with 
age, with the younger ca. 14 Ma monazites having a higher 
Y content (Fig. 8d).

Discussion

Age constraints on GH sedimentary and igneous 
protoliths

Most of the pelitic samples from the lower- and upper-GH 
in central and eastern Bhutan revealed a range of detri-
tal ages between ca. 1800 and 800 Ma (Fig. 2). In addi-
tion, several samples also contained dates as young as 
ca. 500 Ma. Previous detrital zircon studies of the GH in 
other parts of the Himalaya have revealed similar detrital-
age patterns and have argued that the ca. 1800–1600 Ma 
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detrital zircon populations were sourced from Paleopro-
terozoic orogenic events along the Indian shield (Parrish 
and Hodges 1996; Kohn et al. 2010; Long et al. 2011a; 

McQuarrie et al. 2013), whereas the younger detrital ages 
have been interpreted to represent detritus associated with 
late Neoproterozoic to Cambrian orogenesis that occurred 
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along the eastern margin of India (Myrow et al. 2010; 
McQuarrie et al. 2013). Finally, the Late Cambrian–Ordo-
vician dates are similar to other dated orthogneiss bodies 
within the GH in Bhutan (Long and McQuarrie 2010; Long 
et al. 2011c) and across the orogen (Gehrels et al. 2003; 
Cawood and Buchan 2007). These orthogneisses have been 
interpreted to represent granitic intrusions that were likely 
accompanied by metamorphism during the Bhimphedian 
orogeny, a Cambrian–Ordovician event that affected the 
northern Indian margin (e.g., Cawood and Buchan 2007). 
Protoliths for other well-documented Himalayan granitic 
intrusions have been dated at ca. 2600 Ma, ca. 830 Ma, and 
ca. 750 Ma (e.g., Miller et al. 2001).

Eocene–Miocene metamorphism and melt 
crystallization

The Eocene–Miocene U–Th–Pb dates from zircon and 
monazite extracted from these metasedimentary rocks and 
related granitic intrusions are interpreted to record syn-
Himalayan metamorphism, melt crystallization, and the 
initiation of GH exhumation. The zircon and monazite data 
are presented in a compilation diagram comparing the dates 
from each sample versus structural position (Fig. 10) and 
are summarized below.

Metamorphism

Eocene–Miocene dates, ca. 36–24 Ma in eastern Bhutan 
and ca. 33–21 Ma in central Bhutan, were revealed in the 
metapelite and orthogneiss zircons (Figs. 3, 10), likely 
recording prograde-to-peak metamorphism. Other Hima-
layan studies have described similar dates (ca. 35–32 Ma 
in the central Himalaya and ca. 35–25 Ma in the western 
Himalaya) from metasedimentary GH samples and have 
interpreted them to record prograde metamorphism asso-
ciated with underthrusting of the GH protoliths beneath 
a fold–thrust belt that developed in Tethyan Himalayan 
rocks that formed during the early, post-collisional phases 
of India–Asia convergence (Vannay and Hodges 1996; 
Hodges et al. 1996; Yin and Harrison 2000; Godin et al. 
2001; Leech et al. 2005; Corrie and Kohn 2011).

Zircons from one metapelite (BU12-193a) and monazite 
dates from the same metapelite and from a schist (BU12-
178c) and an additional metapelite (BU12-182), all from 
the lower-GH in eastern Bhutan, suggest that metamor-
phism continued until ca. 14 Ma. This is consistent with 
the timing of metamorphism documented in upper-GH 
rocks to the west [e.g., western Bhutan (Grujic et al. 2011; 
Warren et al. 2011b); Ama Drime Massif (Cottle et al. 
2009; Rubatto et al. 2013)] and to the east (e.g., Arunachal 
Pradesh (Warren et al. 2014).

Melt crystallization

The majority of the studied samples that yielded Hima-
layan-aged zircons were the leucosomes, and the results 
from both the central and the eastern Bhutan transects sug-
gest protracted melt crystallization during the Oligocene 
to Miocene. From the eastern Bhutan transect, the major-
ity of the leucosomes showed crystallization from ca. 20 to 
18 Ma, with some older crystallization (up to ca. 27 Ma) in 
the two structural highest studied leucosomes (BU12-207b 
and BU12-209). Samples, BU12-200b and BU12-205, 
are examples of leucosomes that yielded the dominant ca. 
20–18 Ma zircon populations, but they also contained zir-
cons that revealed older, isolated Oligocene dates (Fig. 4c, 
d); however, these dates were considered outliers and not 
interpreted in terms of melt crystallization, which should 
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have resulted in abundant zircon growth (e.g., Kelsey et al. 
2008).

Several leucosome samples also document continued 
melt crystallization as young as ca. 14–13 Ma (BU12-
195a, BU12-200a, BU12-207b) from all structural levels 
of the upper-GH. While sample BU12-190a did not yield 
any Miocene zircons, monazite from this leucosome likely 
dates melt crystallization in the lower-GH rocks at ca. 
15–14 Ma. Overall, the data from the leucosomes in east-
ern Bhutan do not reveal any change in the timing of the 
youngest melt crystallization across the KT.

The two leucosomes from the central Bhutan transect 
suggest the same protracted crystallization history, from ca. 
25 to 18 Ma, observed in the structurally higher samples 
from the eastern Bhutan transect. Leucosome, BU13-23d, 
did also yield a single, concordant, ca. 14 Ma zircon.

Besides the Oligocene to Miocene zircons, multiple leu-
cocratic samples revealed ca. 500 and 830 Ma zircon popu-
lations (BU12-195a, BU13-23d, 37b), and these samples 
provide evidence that there were multiple generations of 
melt present within the two studied transects. Zircon com-
monly forms during melting (e.g., Hermann and Rubatto 
2003; Kelsey et al. 2008); therefore, the absence of or 
lack of abundant Himalayan zircons within multiple of the 
studied leucosomes, combined with the abundance of ca. 
500 Ma zircons, argues that some of the observed migmati-
zation likely occurred during the Cambrian (e.g., related to 
the Bhimphedian orogeny). Thus, these results suggest that 
there are probably a mix of both Oligocene/Miocene and 
Cambrian leucosomes found throughout central and eastern 
Bhutan.

Rock assemblages and trace‑element analyses: linking 
dates to the P–T path

Overall, the metapelite mineral assemblage, with a change 
from kyanite as the dominant aluminosilicate to sillimanite, 
and an overall increasing percentage of leucocratic mate-
rial with increasing structural distance above the MCT 
suggest that higher-temperature conditions were achieved 
from the rocks with increasing structural distance above 
the MCT. Swapp and Hollister (1991) argued, based on 
mineral assemblages, that upper-GH rocks had crossed 
the second sillimanite isograd, and they further argued that 
the GH rocks underwent a near-isothermal decompres-
sion path, due to the presence of cordierite. The majority 
of their samples were from western Bhutan, where these 
qualitative observations have been supported through later 
thermobarometry work (Grujic et al. 2011; Warren et al. 
2011a, b). However, in central and eastern Bhutan, there 
is no evidence that the rocks have crossed the second sil-
limanite isograd. There is abundant muscovite found in the 
metasedimentary rocks, although the overall percentage of 

muscovite does decrease and K-feldspar is found in some 
of the metapelites near sample BU12-209. Moreover, 
cordierite has not been observed in any of the collected 
samples.

Based on these observations and the lack of any quan-
titative thermobarometric data from central and eastern 
Bhutan, simplified P–T paths have been made for differ-
ent structural levels of the GH (Fig. 11); here, we focus 
on eastern Bhutan given the larger number of studied sam-
ples from this transect. The constraints for the P–T paths, 
plotted on a simplified KFMASH compositional diagram, 
consist of: (1) for the lower-GH (based on samples BU12-
178 BU12-182), the presence of kyanite and muscovite but 
no cordierite; (2) for rocks in the structurally lower part of 
the upper-GH (samples BU12-190a,b, BU12-193, BU12-
195, BU12-200a,b, BU12-205), the presence of silliman-
ite, muscovite, and no cordierite; and (3) for rocks in the 
structurally higher part of the upper-GH (samples BU12-
207, BU12-209), sillimanite, smaller amounts of muscovite 
(possible crossing of the second sillimanite isograd), and 
no cordierite.

Timing constraints can be placed on these P–T paths 
using the zircon and monazite results that revealed the tim-
ing of metamorphism and melt crystallization, assuming 
that the rocks had to have surpassed their peak P–T condi-
tions by the time that melt crystallization initiated. There-
fore, the lower-GH rocks underwent peak metamorphism 
>15 Ma (based on the monazite melt crystallization dates 
from BU12-190a). In comparison, the upper-GH rocks 
record a much different history, with peak metamorphism 
occurring >21 Ma in the structurally lower levels of the 
upper-GH and >27 Ma in the structurally higher levels of 
the upper-GH (Fig. 11). Therefore, based on the melt crys-
tallization results, there is a trend with structural distance 
above the MCT in the eastern Bhutan GH rocks, with cool-
ing and probable initial exhumation beginning earlier with 
increasing structural distance above the MCT. The two leu-
cosome samples from central Bhutan also suggest an early 
cooling history, with melt crystallization occurring by ca. 
25 Ma.

These cooling and probable exhumation results are also 
supported by the zircon trace-element data. This study 
focuses mainly on the availability of the HREE, which 
commonly are incorporated into accessory phases, such 
as zircon, monazite, xenotime, and garnet (Rubatto 2002). 
There are age trends in the zircon trace-element data within 
six of the samples that describe when more or less HREEs 
were available for the zircon to take in during crystal 
growth. The results can therefore describe when the break-
down of garnet occurs, which is likely associated with the 
initial stages of decompression (e.g., Spear et al. 1999; 
Rubatto et al. 2013). In the central Bhutan leucosome sam-
ples, the oldest Oligocene dates revealed the lowest Lun/
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Dyn ratios. In particular, the oldest (ca. 31–25 Ma) dates 
from BU13-23d showed a flat HREE profile that were dis-
tinct from the other Oligocene–Miocene (ca. 24–14 Ma) 
dates from the sample (Fig. 7e). In both leucosomes, these 
age trends suggested that more HREEs were available 
within the system post-25 Ma, reflecting that garnet break-
down occurred post-25 Ma. Several of the foliation-parallel 
leucosomes from eastern Bhutan (BU12-195a, 207b) show 
similar trends, where the older Oligocene dates revealed the 
lowest Lun/Dyn ratios, and the HREE ratios increased with 
decreasing age. Interestingly, the one LH sample analyzed 
from below the MCT, the Jaishidanda Formation schist 
(BU12-172), showed the opposite trend compared to the 
GH samples: The HREE patterns became more flat from 
ca. 21 to 17 Ma (Fig. 6a), suggesting garnet growth over 
this time interval and therefore that these dates are likely 
recording prograde-to-peak metamorphism.

Despite the zircon results that in some cases document 
relatively early (ca. 27 Ma) cooling to induce melt crystal-
lization, multiple samples from the lower- and upper-GH 
record continued melt crystallization and metamorphism 
until ca. 14–13 Ma (Fig. 10). The Ti-in-zircon temperatures 
from these Miocene zircons reveal >550 °C crystallization 
temperatures (Fig. 7), suggesting that cooling and initial 
exhumation may have occurred to cause melt crystalliza-
tion and garnet breakdown, but the rocks were not exhumed 
to shallow crustal conditions until post-13 Ma.

Himalayan structures in eastern and central Bhutan

Differences in the conditions and timing of metamorphism 
and melt crystallization within Himalayan rocks have been 
a principal technique used to identify major structures (e.g., 
Martin et al. 2011; Warren et al. 2011b; Rubatto et al. 2013; 
Warren et al. 2014). Comparing the youngest metamor-
phic and/or melt crystallization dates from all of the GH 
metasedimentary and leucocratic rocks shows very similar 
results of ca. 14–13 Ma across the previously mapped KT 
(Swapp and Hollister 1991; Grujic et al. 2002). The new 
data thus do not show a difference in the youngest melt 
crystallization and metamorphic ages from the lower-GH 
in comparison with the upper-GH. Studies in northwestern 
Bhutan, however, have recorded distinct age differences 
across the Laya thrust (Kellett et al. 2009, 2010; Warren 
et al. 2011b; Grujic et al. 2011). There, monazite meta-
morphic ages vary from ca. 21–17 Ma within the lower-
GH to ca. 15–14 Ma within the upper-GH, and melt crys-
tallization ages also decrease across the Laya thrust, from 
ca. 23–15 Ma within the lower-GH (zircon and monazite; 
Carosi et al. 2006; Kellett et al. 2010) to ca. 15–11 Ma in 
the upper-GH (zircon and monazite; Kellett et al. 2009; 
Warren et al. 2011b). The differences in the timing of melt 
crystallization and metamorphism across the Laya thrust 
in comparison with the KT suggest that the two structures 
likely do not connect along strike, as initially interpreted by 
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Grujic et al. (2011) and Long et al. (2011c). Furthermore, 
given the lack of evidence for differences in the metamor-
phic dates throughout the GH section, nor any evidence 
for a crossing of the second sillimanite isograd (which was 
originally how the structure was mapped (Swapp and Hol-
lister 1991), the KT may represent a minor, second-order 
shear zone rather than a major Himalayan structure.

Cooling and exhumation of GH rocks

Multiple models have been proposed for driving the 
emplacement of the GH, with the critical taper-type (e.g., 
Davis et al. 1983) and channel flow-type (e.g., Beaumont 
et al. 2001) exhumation models representing end members. 
Each of these end-member models makes specific predic-
tions about the timing of melt crystallization and metamor-
phism with structural distance through the GH. Critical-
taper end-member models predict that melt crystallization 
and metamorphism would occur homogeneously across 
the GH, with a younging in those ages close to the lower-
bounding structure (Kohn 2008). In comparison, in the 
channel-flow end-member models, the center of the chan-
nel has been translated farther than the channel edges and 
remains hotter longer, resulting in the youngest melt crys-
tallization and metamorphic ages in the center of the chan-
nel (Beaumont et al. 2001; Jamieson et al. 2004).

The upper-GH in central and eastern Bhutan had 
been interpreted as a channel bound by the KT and inner 
STD, and it was thought to have been emplaced from ca. 
15–11 Ma during synchronous activity on these bounding 
structures (Grujic et al. 2002; Hollister and Grujic 2006). 
However, as described above, the new zircon and monazite 
geochronology data presented in this study indicate that 
the youngest melt crystallization ages were consistently ca. 
14–13 Ma (Fig. 10) and that the KT is likely a minor intra-
GH shear zone. If the KT is not a major structure, the data 
from the entire GH can be examined as a whole. In this 
scenario, emplacement and initial exhumation would have 
occurred during motion on the MCT (ca. 23–13 Ma; Grujic 
et al. 2002; Daniel et al. 2003; Kellett et al. 2009, 2010; 
Chambers et al. 2011).

The overall decrease in the initiation of melt crystallization 
dates with lower structural position within the GH unit pre-
sented here is consistent with initial emplacement and cool-
ing of the GH through progressive underplating of material 
likely along minor shear zones, given the lack of evidence 
for major thrust structures throughout the GH unit. The cool-
ing may have been driven either through motion on the outer 
STD or through surface erosion that accompanied the growth 
of the overall structural system. The underplating of ductile 
material and minor exhumation lasted until ca. 15 Ma (melt 
crystallization age of lower-GH sample BU12-190a), and the 
entire package of rocks must have remained at >550 °C until 

14–13 Ma (youngest melt crystallization and metamorphic 
dates), prior to final exhumation. By ca. 11 Ma (40Ar/39Ar 
muscovite cooling ages; Stüwe and Foster 2001; Kellett et al. 
2009), GH rocks in western Bhutan were exhumed below the 
muscovite closure temperature (ca. 400 °C; Harrison et al. 
2009). Thermochronology data are needed from central and 
eastern Bhutan to determine whether final cooling of the GH 
rocks occurred at a similar time to western Bhutan.

GH Rocks across the Himalayan orogen

The geochronology of the Himalaya exposed in regions 
surrounding Bhutan provides important context for the tim-
ing and processes driving metamorphism, melt crystalliza-
tion, deformation, and exhumation in the eastern part of 
the orogen. Immediately west of the study area, the upper-
GH above the Laya thrust in western Bhutan, and within 
the Ama Drime Massif to the west, reached eclogite-facies 
followed by granulite-facies conditions (Cottle et al. 2009; 
Grujic et al. 2011; Warren et al. 2011b). Melt crystalliza-
tion and metamorphism in western Bhutan occurred over a 
short interval of time, with ca. 14 Ma granulite-facies meta-
morphism followed by melt crystallization at ca. 13 Ma 
(monazite; Grujic et al. 2011; Warren et al. 2011b). These 
dates are similar to the youngest metamorphic and melt 
crystallization dates recorded in the upper-GH in zircon 
from both the central and the eastern Bhutan transects of 
this study. The upper-GH rocks of western Bhutan do not 
record the protracted melt crystallization history observed 
in this study; however, lower-GH in western Bhutan has 
yielded a similar range of monazite and zircon melt crystal-
lization ages (ca. 25–15 Ma) (Warren et al. 2011b; Carosi 
et al. 2006; Tobgay et al. 2012) in comparison with the 
lower-GH in central and eastern Bhutan.

East of Bhutan, in western Arunachal Pradesh, a dia-
chronous metamorphic history has also been documented 
across the Zimithang thrust, a structure that has also been 
correlated with the KT (Yin et al. 2010b), with 17–13 Ma 
monazite dates obtained in the hanging-wall rocks and 
27–17 Ma dates from footwall rocks. Several thermochro-
nology analyses reveal 40Ar/39Ar muscovite dates of ca. 
9–7 Ma within the same GH section both above and below 
the Zimithang thrust (Mathew et al. 2013; Warren et al. 
2014). The new zircon and monazite geochronology from 
this study fills a gap in data for the eastern Himalaya and 
illustrates that while general timing relationships for meta-
morphism and melt crystallization are similar for GH rocks 
in all parts of Bhutan and in Arunachal Pradesh, central and 
eastern Bhutan do not show evidence for the major out-
of-sequence thrusting documented in these other regions 
of the eastern Himalaya. Instead within eastern and cen-
tral Bhutan, the GH needs to be treated as a single unit in 
regard to interpretations of emplacement models.
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Conclusions

The integration of zircon and monazite geochronology and 
trace-element geochemistry over a large structural distance 
and across multiple structures, including the MCT and the 
KT, has provided new insight into the tectonic history of 
the GH in central and eastern Bhutan. The new data show 
that the GH remained at temperatures of >550 °C until ca. 
14–13 Ma both structurally above and below the KT. The 
lack of an age trend across the GH suggests that the KT 
was not as significant of a structure as originally proposed 
(i.e., a channel-bounding structure; e.g., Grujic et al. 2002; 
Fig. 10). The data also revealed a downward younging in 
the initiation of melt crystallization through the GH, sug-
gesting that initial emplacement of the GH occurred due to 
progressive underplating of ductile material.
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